Enhancement of neuronal outward delayed rectifier K+ current by human monocyte-derived macrophages. 2009

Dehui Hu, and Jianuo Liu, and Huangui Xiong
Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA.

Macrophages are critical cells in mediating the pathology of neurodegenerative disorders and enhancement of neuronal outward potassium (K(+)) current has implicated in neuronal apoptosis. To understand how activated macrophages induce neuronal dysfunction and injury, we studied the effects of lipopolysaccharide (LPS)-stimulated human monocytes-derived macrophage (MDM) on neuronal outward delayed rectifier K(+) current (I(K)) and resultant change on neuronal viability in primary rat hippocampal neuronal culture. Bath application of LPS-stimulated MDM-conditioned media (MCM) enhanced neuronal I(K) in a concentration-dependent manner, whereas non-stimulated MCM failed to alter neuronal I(K). The enhancement of neuronal I(K) was repeated in a macrophage-neuronal co-culture system. The link of stimulated MCM (MCM(+))-associated enhancement of I(K) to MCM(+)-induced neuronal injury, as detected by PI/DAPI (propidium iodide/4',6-diamidino-2-phenylindol) staining and MTT assay, was demonstrated by experimental results showing that addition of I(K) blocker tetraethylammonium to the culture protected hippocampal neurons from MCM(+)-associated challenge. Further investigation revealed elevated levels of K(v) 1.3 and K(v) 1.5 channel expression in hippocampal neurons after addition of MCM(+) to the culture. These results suggest that during brain inflammation macrophages, through their capacity of releasing bioactive molecules, induce neuronal injury by enhancing neuronal I(K) and that modulation of K(v) channels is a new approach to neuroprotection.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Dehui Hu, and Jianuo Liu, and Huangui Xiong
July 1998, The American journal of physiology,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
March 2001, Acta pharmacologica Sinica,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
August 1993, Circulation research,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
January 2012, Journal of neuroscience research,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
February 2006, Journal of neurophysiology,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
July 2007, Journal of neurochemistry,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
February 1991, The American journal of physiology,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
July 2002, Yao xue xue bao = Acta pharmaceutica Sinica,
Dehui Hu, and Jianuo Liu, and Huangui Xiong
August 2003, Sheng li xue bao : [Acta physiologica Sinica],
Dehui Hu, and Jianuo Liu, and Huangui Xiong
July 2007, American journal of physiology. Cell physiology,
Copied contents to your clipboard!