Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. 1992

B L Chen, and W A Baase, and H Nicholson, and J A Schellman
Institute of Molecular Biology, University of Oregon, Eugene 97403-1229.

The kinetics of unfolding and refolding of T4 lysozyme and nine of its mutants have been investigated as a function of guanidinium chloride concentration at 12 degrees C. All show simple two-state, first-order kinetics. Two types of mutants were studied: proline-alanine interchanges and substitutions at position 3 with side chains of varying hydrophobicity. Crystal structures are available for seven of the ten proteins. The effect of mutations on the folding kinetics is more pronounced and complex than on equilibrium thermodynamics. The proteins fall into two broad kinetic classes with one class rather close to the wild type. P86A is a mutant with marked changes in kinetics but only a very small change in stability. Since the 86 position is in the middle of an alpha-helix, the indications are that the helix containing an A residue is more stable in the transition state than one containing a P residue. The other mutants are more complicated, with the refolding and unfolding rates unequally affected by the mutations. On the basis of comparisons with other investigations, we conclude that the rate-determining step in the presence of guanidinium chloride is not the same as in aqueous solution and that it most likely precedes it. The indications are that we are studying the formation of a transition intermediate which is destabilized by the denaturant and which resembles the A intermediate of the framework or molten globule models for protein folding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

B L Chen, and W A Baase, and H Nicholson, and J A Schellman
January 2021, Current research in structural biology,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
December 1987, Protein engineering,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
March 1990, Biochemistry,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
January 2007, Journal of molecular biology,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
March 1974, Nature,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
January 1997, Journal of colloid and interface science,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
April 1990, Biochemistry,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
January 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
December 2002, Biophysical chemistry,
B L Chen, and W A Baase, and H Nicholson, and J A Schellman
February 1996, Molecular diversity,
Copied contents to your clipboard!