Characterization of chloride transport pathways in cultured human keratinocytes. 1991

T Mastrocola, and M De Luca, and M Rugolo
Dipartimento di Biologia Ev. Sp., Universitá di Bologna, Italy.

In human keratinocytes, mediated transport of Cl- was found to occur mainly by two mechanisms: an anion exchange and an electrically conductive pathway. The contribution of the anion exchange, which accounted for about 50% of overall Cl- efflux, was assessed either by its sensitivity to inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and by means of Cl- substitution experiments. The anion exchange exhibited a saturation behaviour over the range 10-135 mM Cl-; Cl- was more efficient than HCO3-, Br- and NO3- in increasing Cl- efflux rate, whereas SO4(2-) and I- inhibited Cl- efflux. The electrically conductive Cl- pathway, which accounted for about 40% of total Cl- efflux, was inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and was at least partially sensitive to variation of the plasma membrane potential. The Cl- channel was insensitive to elevation in the intracellular concentration of either cyclic AMP and calcium ions. Indomethacin, an inhibitor of the cyclooxygenase, failed to reduce Cl- efflux, whereas nordihydroguaiaretic acid (NDGA), an inhibitor of the lipoxygenase, induced 50% inhibition of Cl- efflux. These results support the conclusion that endogenous production of lipoxygenase-derived arachidonic acid metabolite(s) might be responsible for high basal Cl- permeability in human keratinocytes.

UI MeSH Term Description Entries
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009637 Masoprocol A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Nordihydroguaiaretic Acid,(R*,S*)-4,4'-(2,3-Dimethylbutane-1,4-diyl)bispyrocatechol,Actinex,Dihydronorguaiaretic Acid,Nordihydroguaiaretic Acid, (R*,S*)-Isomer,meso-Nordihydroguaiaretic Acid,Acid, meso-Nordihydroguaiaretic,meso Nordihydroguaiaretic Acid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005942 Gluconates Derivatives of gluconic acid (the structural formula HOCH2(CHOH)4COOH), including its salts and esters. Copper Gluconate,Gluconate, Copper
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS

Related Publications

T Mastrocola, and M De Luca, and M Rugolo
March 1991, Pflugers Archiv : European journal of physiology,
T Mastrocola, and M De Luca, and M Rugolo
March 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
T Mastrocola, and M De Luca, and M Rugolo
June 1992, Biochimica et biophysica acta,
T Mastrocola, and M De Luca, and M Rugolo
January 1990, JAMA,
T Mastrocola, and M De Luca, and M Rugolo
September 1991, The Journal of investigative dermatology,
T Mastrocola, and M De Luca, and M Rugolo
May 1993, The Journal of biological chemistry,
T Mastrocola, and M De Luca, and M Rugolo
April 1996, Experimental eye research,
T Mastrocola, and M De Luca, and M Rugolo
August 1994, Journal of cell science,
T Mastrocola, and M De Luca, and M Rugolo
August 2003, American journal of physiology. Cell physiology,
T Mastrocola, and M De Luca, and M Rugolo
April 2005, The Journal of investigative dermatology,
Copied contents to your clipboard!