Cell kinetic characterization of growth arrest in cultured human keratinocytes. 1994

F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
Department of Dermatology, University Hospital Nijmegen, The Netherlands.

In this study we have performed a cell kinetic characterization of growth and growth arrest of keratinocytes derived from normal human skin. Proliferative activity of the cell cultures was analysed with a flow cytometric technique, measuring relative DNA content and iododeoxyuridine (IdUrd) incorporation simultaneously. Normal human keratinocytes were grown in keratinocyte growth medium (KGM) and growth arrest was induced by using either keratinocyte basal medium (KBM) or KGM supplemented with TGF-beta 1. It was found that human keratinocytes grown in KGM plus TGF-beta 1 were growth-arrested within 52 hours. The rate of IdUrd incorporation into DNA decreased by more than 95% after 52 hours and paralleled the decrease of cells in S-phase. Within 52 hours after addition of TGF-beta 1, 79% of the growth-arrested cells were in the G0/G1-phase of the cell cycle, a situation that approaches that of the normal epidermis. Growth arrest of human keratinocytes in KBM showed a similar decrease in the rate of IdUrd incorporation. However, the decrease in IdUrd incorporation was not reflected in a decrease in cells in S-phase, suggesting that the cells were blocked in G0/G1, S or G2/M-phase rather than selectively in the physiological growth arrest state of G0/G1. Secondly, we investigated the kinetics of the cells when they were restimulated after growth arrest. We found that after termination of the growth arrest in KGM supplemented with TGF-beta 1 the cells require 6 to 8 hours to initiate DNA synthesis, with a continued decrease in the G0/G1 population, suggesting that the cells are recruited as a cohort. After growth arrest induced by KBM, cells also require 6 to 8 hours in KGM to initiate DNA synthesis, but the cells are not recruited as a cohort. We conclude that growth arrest induced by TGF-beta 1 is the preferred system in which to study induction of keratinocyte proliferation, since it induces a state of quiescence that approaches that of normal human epidermis.

UI MeSH Term Description Entries
D007065 Idoxuridine An analog of DEOXYURIDINE that inhibits viral DNA synthesis. The drug is used as an antiviral agent. 5-Iodo-2'-deoxyuridine,IUdR,Iododeoxyuridine,5-Iododeoxyuridine,Allergan 211,Herplex Liquifilm,Idoxuridine, 123I-Labeled,Idoxuridine, 125I-Labeled,Idoxuridine, 131I-Labeled,Idoxuridine, 3H-Labeled,Idoxuridine, Radical Ion (+1),Idoxuridine, Radical Ion (1-),Kerecide,NSC-39661,Oftan-IDU,SK&F-14287,Stoxil,123I-Labeled Idoxuridine,125I-Labeled Idoxuridine,131I-Labeled Idoxuridine,3H-Labeled Idoxuridine,5 Iodo 2' deoxyuridine,5 Iododeoxyuridine,Idoxuridine, 123I Labeled,Idoxuridine, 125I Labeled,Idoxuridine, 131I Labeled,Idoxuridine, 3H Labeled,Liquifilm, Herplex,NSC 39661,NSC39661,Oftan IDU,OftanIDU
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
January 1990, JAMA,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
September 1991, The Journal of investigative dermatology,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
November 1991, Biochimica et biophysica acta,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
May 1993, The Journal of biological chemistry,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
March 1991, Pflugers Archiv : European journal of physiology,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
October 2006, Biochemical and biophysical research communications,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
May 1983, The Journal of investigative dermatology,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
September 2006, Cell biology and toxicology,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
December 1991, The Journal of investigative dermatology,
F van Ruissen, and P E van Erp, and G J de Jongh, and J B Boezeman, and P C van de Kerkhof, and J Schalkwijk
April 2005, The Journal of investigative dermatology,
Copied contents to your clipboard!