Neuroprotective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons. 2007

Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
Department of Environmental And Biological Science And Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China.

The neuroprotective effects of catalpol, an iridoid glycoside present in the roots of Rehmannia glutinosa, on 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative stress in cultured mesencephalic neurons, especially dopaminergic neurons, were investigated. Exposure of mesencephalic neurons to 10microM MPP(+) induced a leakage of lactate dehydrogenase (LDH) and decreased cell viability, measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Catalpol increased neuron viability and markedly attenuated MPP(+)-induced dopaminergic neuron death in a dose-dependent manner. In order to clarify the neuroprotective mechanism of catalpol, mitochondrial function, the activities of endogenous antioxidants and the lipid peroxide content were measured. The results indicated that catalpol prevented the MPP(+)-induced inhibition of complex I activity and the loss of mitochondrial membrane potential. In addition, catalpol reduced the content of lipid peroxide and increased the activity of glutathione peroxidase and superoxide dismutase. Taken together, the above results suggest that catalpol may be a candidate drug for the treatment of oxidative stress-induced neurodegenerative disease.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005960 Glucosides A GLYCOSIDE that is derived from GLUCOSE. Glucoside
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D015655 1-Methyl-4-phenylpyridinium An active neurotoxic metabolite of 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE. The compound reduces dopamine levels, inhibits the biosynthesis of catecholamines, depletes cardiac norepinephrine and inactivates tyrosine hydroxylase. These and other toxic effects lead to cessation of oxidative phosphorylation, ATP depletion, and cell death. The compound, which is related to PARAQUAT, has also been used as an herbicide. Cyperquat,1-Methyl-4-phenylpyridine,1-Methyl-4-phenylpyridinium Chloride,1-Methyl-4-phenylpyridinium Ion,N-Methyl-4-phenylpyridine,N-Methyl-4-phenylpyridinium,1 Methyl 4 phenylpyridine,1 Methyl 4 phenylpyridinium,1 Methyl 4 phenylpyridinium Chloride,1 Methyl 4 phenylpyridinium Ion,N Methyl 4 phenylpyridine
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053078 Membrane Potential, Mitochondrial The voltage difference, normally maintained at approximately -180mV, across the INNER MITOCHONDRIAL MEMBRANE, by a net movement of positive charge across the membrane. It is a major component of the PROTON MOTIVE FORCE in MITOCHONDRIA used to drive the synthesis of ATP. Delta Psi M,DeltaPsi M,DeltapsiM,Mitochondrial Membrane Potential,Mitochondrial Transmembrane Potential,M, DeltaPsi,Membrane Potentials, Mitochondrial,Mitochondrial Membrane Potentials,Mitochondrial Transmembrane Potentials,Transmembrane Potential, Mitochondrial,Transmembrane Potentials, Mitochondrial
D057888 Iridoid Glucosides A subclass of iridoid compounds that include a glucoside moiety, usually found at the C-1 position. Iridoid Glucoside,Iridoidglucoside,Secoiridoid Glucoside,Iridoidglucosides,Secoiridoid Glucosides,Glucoside, Iridoid,Glucoside, Secoiridoid,Glucosides, Iridoid,Glucosides, Secoiridoid

Related Publications

Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
July 2008, Neurological research,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
June 2019, The International journal of neuroscience,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
January 2014, Folia neuropathologica,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
February 2019, Journal of biochemical and molecular toxicology,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
June 2012, Journal of molecular neuroscience : MN,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
July 2001, Neuroreport,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
October 2010, Brain research bulletin,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
September 2008, Neuroscience letters,
Yuan-Yuan Tian, and Bo Jiang, and Li-Jia An, and Yong-Ming Bao
January 2018, RSC advances,
Copied contents to your clipboard!