Neuroprotective effect of naringenin against MPTP-induced oxidative stress. 2019

Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
a Research and Development Centre , Bharathiar University , Coimbatore , Tamil Nadu , India.

BACKGROUND Parkinson's disease is the most common neurodegenerative disorder, characterized by loss of dopaminergic neurons in substantia nigra and depletion of dopamine in striatum due to excitotoxicity, oxidative stress and many other factors may contribute to MPTP- and PD-related neurodegeneration. The present study deals with the neuroprotective effect of Naringenin (NGN), a bioflavonoid against MPTP-induced Parkinson's disease in the mouse model. METHODS Healthy male C57BL/6J mice (18-22 g b wt) were pretreated with NGN [25, 50, 100 mg/kg/b.wt, p.o] once daily for 5 days. Thereafter, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) (80 mg/kg b.wt, i.p) was given in two divided doses (2 × 40 mg/kg at 16 h interval). The animals were observed for motor functions 48 h after the first MPTP injection. After completion of behaviour tasks, all animals were euthanized to dissect out the brain and used for biochemical, molecular and histopathological investigations. RESULTS Pretreatment of NGN significantly reversed the toxic effects of MPTP by reducing LPO levels and increasing the activities of glutathione reductase and catalase along with improved behavioural performance. Interestingly, pre-treatment with NGN down-regulated iNOS expression level in MPTP intoxicated mice brain. In addition, the histopathological evaluation revealed that NGN decreased the nuclear pigmentation and cytoplasmic vacuolation in the substantia nigra and striatal regions when compared to MPTP-intoxicated mice brain. CONCLUSIONS The present study showed that NGN exerts neuroprotection by suppressing oxidative stress via antioxidant mechanisms. The above finding suggests that NGN may act as a potential target in the management of PD.

UI MeSH Term Description Entries
D008297 Male Males
D010302 Parkinson Disease, Secondary Conditions which feature clinical manifestations resembling primary Parkinson disease that are caused by a known or suspected condition. Examples include parkinsonism caused by vascular injury, drugs, trauma, toxin exposure, neoplasms, infections and degenerative or hereditary conditions. Clinical features may include bradykinesia, rigidity, parkinsonian gait, and masked facies. In general, tremor is less prominent in secondary parkinsonism than in the primary form. (From Joynt, Clinical Neurology, 1998, Ch38, pp39-42) Atherosclerotic Parkinsonism,Secondary Parkinsonism,Symptomatic Parkinson Disease,Parkinson Disease, Secondary Vascular,Parkinson Disease, Symptomatic,Parkinsonism, Secondary,Parkinsonism, Symptomatic,Secondary Vascular Parkinson Disease,Parkinsonism, Atherosclerotic,Secondary Parkinson Disease,Symptomatic Parkinsonism
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D015227 Lipid Peroxidation Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor. Lipid Peroxidations,Peroxidation, Lipid,Peroxidations, Lipid
D015632 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine A dopaminergic neurotoxic compound which produces irreversible clinical, chemical, and pathological alterations that mimic those found in Parkinson disease. MPTP,N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Related Publications

Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
April 2013, Annals of neurosciences,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
June 2012, Biological trace element research,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
January 2018, RSC advances,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
July 2007, European journal of pharmacology,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
August 2016, BMC neuroscience,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
October 2022, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
August 2015, Journal of molecular neuroscience : MN,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
July 2015, Neuroscience letters,
Mani Sugumar, and Murugan Sevanan, and Sathiya Sekar
February 2012, Bioscience trends,
Copied contents to your clipboard!