Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans. 2007

G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
Department of Animal Science, Iowa State University, Ames 50011, USA.

Changing the milk fatty acid composition can improve the nutritional and physical properties of dairy products and their acceptability to consumers. A more healthful milk fatty acid composition can be achieved by altering the cow's diet, for example, by feeding supplemental fish oil (FO) or roasted soybeans (RSB), or by selecting cows with a more unsaturated milk fatty acid composition. We examined whether feeding supplemental FO or RSB to cows that had a more unsaturated milk fatty acid composition acted additively to produce butter with improved fatty acid composition and texture. Using a 3 x 3 Latin square design with 2 replications, we fed diets to multiparous Holstein cows (60 to 200 DIM) chosen for producing either more or less unsaturated milk fatty acid composition (n = 6 for each group) for three 3-wk periods. The control diet contained 3.7% crude fat and the 2 experimental diets contained, on a dry matter basis, 0.8% of additional lipids in the form of 0.9% of FO or 5% of RSB. The milk, collected in the third week of feeding, was used to make butter, which was analyzed for its fatty acid composition and physical properties. Dry matter intake, milk yield, and milk composition were not significantly affected by cow diet or by cow selection. Cows that produced a more unsaturated and healthful milk fat prior to the feeding study, according to a "health-promoting index" [HPI = (sum of % of unsaturated fatty acids)/ (%12:0 + 4 x %14:0 + %16:0)], maintained a higher HPI in their butter during the feeding study than did cows with a low HPI. Milk from cows fed supplemental FO or RSB yielded more unsaturated butters with a higher HPI. This butter also was softer when the cows were fed RSB. Feeding RSB to cows chosen for their high milk HPI yielded the most unsaturated butter with the highest HPI and softest texture. Thus, selecting cows with a more health-promoting milk fatty acid composition and feeding supplemental RSB can be used in combination to produce butter that has a consumer-friendly texture and a healthful fatty acid profile.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D002079 Butter The fatty portion of milk, separated as a soft yellowish solid when milk or cream is churned. It is processed for cooking and table use. (Random House Unabridged Dictionary, 2d ed) Butters
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D005260 Female Females
D005395 Fish Oils Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings. Fish Liver Oils,Fish Oil,Liver Oils, Fish,Oil, Fish,Oils, Fish,Oils, Fish Liver
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
October 2003, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
October 2001, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
February 2001, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
September 2002, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
October 2006, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
March 1998, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
March 2011, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
May 2024, Scientific reports,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
January 1994, Journal of dairy science,
G Bobe, and S Zimmerman, and E G Hammond, and A E Freeman, and P A Porter, and C M Luhman, and D C Beitz
October 2013, Journal of dairy science,
Copied contents to your clipboard!