[The mouse ovarian surface epithelium cells (MOSE) transformation induced by c-myc/K-ras in]. 2006

De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
Department of Gynecological Oncology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, China. yaodeson@163.com

OBJECTIVE To study the function of c-myc and K-ras in tumorigenesis of ovarian cancer. METHODS K-ras and/or c-myc cDNAs were introduced into mouse ovarian surface epithelium cells (MOSE) using recombinant Moloney retroviral vectors. The resulting MOSE cells were studied by cell proliferation assays, the ability to form colonies in soft agarose, matrigel invasion assays and tumorigenicity assays in nude mice. RESULTS K-ras and c-myc can be easily delivered to the normal MOSE cells by recombinant retroviruses. mRNA and protein of the target genes can be detected by RT-PCR and Western blot. Cell proliferation assays showed that MOSE-Ras cells and MOSE-RM cells (MOSE-Ras/Myc) grew more rapidly than parental cells (MOSE) and MOSE-Myc cells (P <0.01). In addtition, MOSE-RM cells grew more rapidly than MOSE-Ras cells (P <0. 05). Cell colony formation assays showed that while MOSE-Ras and MOSE-RM cells can form colonies in soft-agarose, the MOSE-Myc and MOSE cells did not. Matrigel invasion assays showed that MOSE-Ras and MOSE-RM cells have invasion ability, but not MOSE-Myc ascites and the control MOSE cells. Xenograft experiments showed that MOSE-Ras and MOSE-RM cells were able to form tumors in nude mice following intraperitoneal injection. Tumors were not observed in animals injected with either MOSE-Myc or MOSE cells. CONCLUSIONS The recombinant Moloney retroviral system is a highly efficient and convenient method for introducing and expressing foreign genes in murine surface epithelial cell cultures. In this model, expression of K-ras alone is sufficient to generate tumorigenic MOSE, however expression of c-myc in conjunction with K-ras results in cells with a higher index of malignancy. Based on the assays described in this report, expression of c-myc alone can not transform MOSE cultures although it does play a role in cooperation with K-ras.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
January 1999, Japanese journal of cancer research : Gann,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
January 1988, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
December 1995, Cancer research,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
December 2003, British journal of cancer,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
September 1991, International journal of cancer,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
February 1987, Molecular and cellular biology,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
November 2011, Carcinogenesis,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
February 1997, Nature,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
January 2000, Oncogene,
De-Sheng Yao, and Li Li, and Kenneth Garson, and Barbara C Vanderhyden
July 1995, Zhonghua fu chan ke za zhi,
Copied contents to your clipboard!