Association of minisatellite instability with c-myc amplification and K-ras mutation in methylcholanthrene-induced mouse sarcomas. 1995

O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
Department of Molecular Pathology, Hiroshima University, Japan.

Instability of microsatellite sequences are frequently found in human tumors. In addition, minisatellite sequences, another group of highly unstable sequences, serve as sensitive markers of genetic instability. We have studied minisatellite instability in methylcholanthrene-induced mouse sarcomas. These sarcomas frequently carry the amplified c-myc gene. Seven sarcomas without the amplification and seven others with the amplification were selected randomly. Regardless of the state of the c-myc gene amplification, these sarcomas exhibited a varying degree of transplantability in syngeneic mice. The hypervariable mouse minisatellite locus Ms6hm was found to be highly unstable, specifically among sarcomas with the amplified c-myc gene. However, chromosome instability, as analyzed by micronucleus assay, was observed similarly for two groups of sarcomas. In addition, transversion of G to C and A to T was detected at the K-ras gene in four of the seven sarcomas with the amplified c-myc gene, and these mutations are thought to be induced directly by methylcholanthrene. Thus, concomitant occurrence was observed for three seemingly unrelated mutations, amplification of the c-myc locus, point mutation of the K-ras gene, and instability at the hypervariable mouse minisatellite locus. The present study indicates a possible involvement of K-ras mutation and c-myc amplification in induction of genetic instability in methylcholanthrene-induced mouse sarcomas.

UI MeSH Term Description Entries
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012513 Sarcoma, Experimental Experimentally induced neoplasms of CONNECTIVE TISSUE in animals to provide a model for studying human SARCOMA. EHS Tumor,Sarcoma, Engelbreth-Holm-Swarm,Sarcoma, Jensen,Experimental Sarcoma,Experimental Sarcomas,Sarcomas, Experimental,Engelbreth-Holm-Swarm Sarcoma,Jensen Sarcoma,Sarcoma, Engelbreth Holm Swarm,Tumor, EHS

Related Publications

O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
January 1999, Japanese journal of cancer research : Gann,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
November 1992, Japanese journal of cancer research : Gann,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
January 2004, Folia histochemica et cytobiologica,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
November 1986, Carcinogenesis,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
August 1988, Carcinogenesis,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
January 1997, Cancer letters,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
December 2006, Zhonghua zhong liu za zhi [Chinese journal of oncology],
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
September 1999, Cellular and molecular life sciences : CMLS,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
July 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
O Niwa, and K Kamiya, and C Furihata, and Y Nitta, and Z Wang, and Y J Fan, and Y Ninomiya, and N Kotomura, and M Numoto, and R Kominami
August 1994, Cancer genetics and cytogenetics,
Copied contents to your clipboard!