Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. 2007

Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.

Although dendritic cell (DC) function is impaired in pancreatic cancer patients, the underlying mechanisms are unknown. This study analyzed the soluble factors released by pancreatic cancer cells responsible for inhibiting DC differentiation and activation. Medium conditioned by a highly metastatic human pancreatic cancer cell line BxPC-3 [BxPC-3 conditioned medium (BxCM)] was mainly used for the study. Both CD34+ hematopoietic progenitor cell-derived and CD14+ monocyte-derived immature DCs and mature DCs (mDCs) were inhibited by BxCM. Allostimulation of CD4+ and CD8+ T cells by BxCM-treated mDCs was inefficient and resulted in production of lower levels of Th1 and Th2 cytokines. Antigen-specific T-cell activation capability was also reduced in BxCM-treated mDCs. Addition of exogenous interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF), which were present in high amounts in BxCM, mimicked the inhibitory effect of BxCM on DC differentiation and maturation. IL-6 was able to suppress DC differentiation and G-CSF mainly acted on the suppressing allostimulatory capacity of DCs. In addition, pancreatic cancer patient sera were able to inhibit DC differentiation of CD14+ monocytes obtained from healthy donors. Depleting IL-6 or G-CSF from BxCM could reverse the DC-inhibitory properties of BxCM. Furthermore, BxCM, IL-6, or G-CSF led to the activation of signal transducer and activator of transcription 3 (STAT3) in CD14+ monocytes to different degrees. Blocking BxCM-induced STAT3 activation also reversed the inhibitory effect of BxCM on DC differentiation. Therefore, IL-6 and G-CSF in BxCM represent two main factors responsible for suppression of DC differentiation, maturation, and antigen presentation, and this suppression of DC functions may be due to the aberrant activation of STAT3 by BxCM.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016179 Granulocyte Colony-Stimulating Factor A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines. Colony-Stimulating Factor, Granulocyte,G-CSF,Myeloid Growth Factor,Colony Stimulating Factor, Granulocyte,Factor, Granulocyte Colony-Stimulating,Factor, Myeloid Growth,Granulocyte Colony Stimulating Factor,Growth Factor, Myeloid

Related Publications

Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
December 2012, Medical oncology (Northwood, London, England),
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
July 1988, Circulatory shock,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
January 1989, The Journal of molecular and cellular immunology : JMCI,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
March 2019, Cancer science,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
January 1998, Japanese journal of clinical oncology,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
March 2012, Metabolic brain disease,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
January 1987, Haematology and blood transfusion,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
January 1998, Immunological investigations,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
May 2011, Journal of assisted reproduction and genetics,
Uddalak Bharadwaj, and Min Li, and Rongxin Zhang, and Changyi Chen, and Qizhi Yao
September 2004, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!