Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. 2007

Evan F Haney, and Fanny Lau, and Hans J Vogel
Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4.

Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer.

UI MeSH Term Description Entries
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D007782 Lactoglobulins Globulins of milk obtained from the WHEY. Lactoglobulin,beta-Lactoglobulin,beta-Lactoglobulin A,beta-Lactoglobulin B,beta-Lactoglobulin C,beta-Lactoglobulin E,beta-Lactoglobulin F,beta-Lactoglobulin G,beta-Lactoglobulin I,beta Lactoglobulin,beta Lactoglobulin A,beta Lactoglobulin B,beta Lactoglobulin C,beta Lactoglobulin E,beta Lactoglobulin F,beta Lactoglobulin G,beta Lactoglobulin I
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.

Related Publications

Evan F Haney, and Fanny Lau, and Hans J Vogel
February 2004, Peptides,
Evan F Haney, and Fanny Lau, and Hans J Vogel
June 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Evan F Haney, and Fanny Lau, and Hans J Vogel
August 2011, Biophysical journal,
Evan F Haney, and Fanny Lau, and Hans J Vogel
February 1997, Japanese journal of cancer research : Gann,
Evan F Haney, and Fanny Lau, and Hans J Vogel
November 1998, Journal of dairy science,
Evan F Haney, and Fanny Lau, and Hans J Vogel
February 2018, Plant physiology and biochemistry : PPB,
Evan F Haney, and Fanny Lau, and Hans J Vogel
March 2005, Biochimica et biophysica acta,
Copied contents to your clipboard!