Morphological correlates of synaptic transmission in lamprey spinal cord. 1976

B N Christensen

The dye Procion brown was used to identify in the light and electron microscope, synaptic contacts made between monosynaptically coupled neurons in the lamprey spinal cord whose synaptic interaction had been recorded. Synaptic contacts were made on different dendrites of the postsynaptic cell at different distances from the soma. Some of the contacts were made on dentritic spines and some on the smooth shaft of the dentrites. Serial sections through synaptic contacts made on dendritic processess of the postsynaptic cells were used for three-dimensional reconstruction of the synapses using computer graphics techniques. The computer reconstructions and detailed examination of the serial EM micrographs revealed the large proliferation of membrane involved in making these en passant synapses as well as the morphological changes due to stimulation of the presynaptic axon. These changes include depletion of synaptic vesicles and formation of complex vesicles and synaptic cisternae. Besides chemical synaptic contacts, four electrotonic contacts were located, confirming the mixed electrochemical synaptic response recorded from the postsynaptic cell. The mean quantum content was estimated and compared with the estimate of the available transmitter pool, assuming the quantal release hypothesis applies at these synapses. The total transmitter pool was estimated by counting all synaptic vesicles in all synaptic contacts. It was estimated that about 6% of the total transmitter pool is available for release at these synapses. This compares with less than 1% at the neuromuscular junction and about 20% at sympathetic synapses. These results support the hypothesis that synaptic vesicles may be recycled as described by Heuser and Reese (22) at the neuromuscular junction. Ongoing studies are investigating the effect on a variety of synaptic junctions to stimulation for different periods of time of presynaptic axons. The methods described in this study can also be used to test the models of synaptic interaction on dendritic trees described by Rall (39) and Jack and Redman (24).

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D003202 Computers, Analog Computers in which quantities are represented by physical variables; problem parameters are translated into equivalent mechanical or electrical circuits as an analog for the physical phenomenon being investigated. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Computers, Analogue,Analog Computer,Analog Computers,Analogue Computer,Analogue Computers,Computer, Analog,Computer, Analogue
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

B N Christensen
March 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B N Christensen
January 2007, Journal of neurophysiology,
B N Christensen
August 2008, Journal of neurophysiology,
B N Christensen
August 1996, The Journal of comparative neurology,
B N Christensen
January 2000, Progress in brain research,
Copied contents to your clipboard!