Synaptic and nonsynaptic monoaminergic neuron systems in the lamprey spinal cord. 1996

J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.

In the lamprey spinal cord, dopamine- (DA) and 5-hydroxytryptamine-(5-HT) containing cells appear to play an important role in controlling the firing properties of motoneurons and interneurons and, thereby, in modulating the efferent motor pattern. To determine the detailed morphology and synaptic connectivity of the intraspinal DA and 5-HT systems in Lampetra fluviatilis and Ichthyomyzon unicuspis, DA and 5-HT antisera were used in light and electron microscopic immunocytochemical experiments. Two main groups of labeled cells were distinguished: DA-containing liquor-contacting (LC) cells distributed along the central canal, and 5-HT+DA-containing multipolar cells located near the midline ventral to the central canal. Both types were synaptically connected with other neuronal elements. The DA-immunoreactive LC cells, which extended a ciliated process into the central canal, received symmetrical synapses from unlabeled terminals containing small synaptic vesicles. The distal process of the LC cells could be traced to the lateral cell column, to the ventral aspect of the dorsal column, or to the ventromedial area. Ultrastructural analysis of DA fibers in these regions showed the presence of labeled terminals containing numerous small synaptic vesicles and a few dense-core vesicles. These terminals formed symmetrical synapses with unlabeled cell bodies and dendrites, with GABA-immunopositive LC cells, and with the multipolar DA+5-HT cells. The multipolar DA+5-HT cells also received input from unlabeled synapses. Intracellular recording from these cells showed that they received excitatory postsynaptic potentials in response to stimulation of fibers in the ventromedial tracts and dorsal roots. The terminals of the multipolar DA+5-HT neurons in the ventromedial spinal cord contained numerous dense-core vesicles and small synaptic vesicles, but no synaptic specializations could be detected. In addition, a small number of larger DA-immunoreactive cells were observed in the lateral cell column at rostral levels. The lamprey spinal cord thus contains distinct populations of synaptically interconnected monoaminergic neurons. Dopamine-containing LC cells synapse onto DA+5-HT-containing multipolar cells, in addition to GABAergic LC cells and unidentified spinal neurons. In contrast, the multipolar cells appear to exert their influence by nonsynaptic mechanisms.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000588 Amines A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
March 1976, Journal of neurophysiology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
January 2007, Journal of neurophysiology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
August 2008, Journal of neurophysiology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
January 1997, Journal of neurophysiology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
November 1970, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
March 2007, Neuroscience,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
January 2000, Progress in brain research,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
February 1981, Journal of neurocytology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
July 1987, The Journal of physiology,
J L Schotland, and O Shupliakov, and S Grillner, and L Brodin
January 1986, Andrologia,
Copied contents to your clipboard!