Muscarinic acetylcholine receptors are expressed and enriched in growth cone membranes isolated from fetal and neonatal rat forebrain: pharmacological demonstration and characterization. 1991

S Saito, and Y Komiya, and M Igarashi
Department of Molecular and Cellular Neurobiology, Gunma University School of Medicine, Japan.

Nerve growth cones, the motile tips of growing neurites, are closely related to the exact pathway finding, and their roles for synaptogenesis have been proposed to be modified by some neurotransmitters. In the present study, to clarify the expression and the ontogeny of muscarinic acetylcholine receptors in growth cones, growth cone membranes from fetal and neonatal rat forebrain were isolated, and muscarinic receptors in growth cone membrane were pharmacologically characterized, by using the [3H]quinuclidinyl benzilate as a labeled ligand. The specific binding sites for [3H]quinuclidinyl benzilate had already been detected in growth cone membrane on embryonic day (E)17 (Bmax = 557 fmol/mg protein: KD = 19.7 pM) and gradually increased in amount without significant changes in the KD values from E17 to postnatal day (P)5. [3H]Quinuclidinyl benzilate binding sites in growth cone membrane were several times higher than that in the P2-fraction-derived membranes, and in perinuclear membranes. Competitive inhibition studies showed that the proportion of high-affinity sites for pirenzepine (M1-subtype) to total [3H]quinuclidinyl benzilate binding sites in growth cone membrane was significantly lower than that in adult synaptic plasma membranes. In contrast, the proportion of high-affinity sites for AF-DX 116 (M2-subtype) was significantly higher than that in adult synaptic plasma membranes (E17 growth cone membrane: M1, 29.5%; M2, 56.9%; adult synaptic plasma membrane: M1, 63.6%, M2, 5.9%). Electron micrographic examination revealed that there were no significant morphological differences among growth cone particle fractions at the developmental stages which we examined, and that mature synaptic elements did not contaminate the growth cone particle fractions. Biochemical examination by electrophoresis and the phosphorylation study of the growth cone particle fractions showed that the protein composition and the phosphoprotein pattern did not change markedly during these stages. Our results suggest that muscarinic receptors were expressed and more concentrated in growth cone membrane than in other membrane portions from perinatal rat forebrain, and that they may play some role in the axonal guidance in growth cone via receptor subtype-specific signal transduction mechanisms.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

S Saito, and Y Komiya, and M Igarashi
January 1999, Methods in molecular biology (Clifton, N.J.),
S Saito, and Y Komiya, and M Igarashi
September 1993, The American journal of physiology,
S Saito, and Y Komiya, and M Igarashi
August 1984, British journal of pharmacology,
S Saito, and Y Komiya, and M Igarashi
February 1982, The Biochemical journal,
S Saito, and Y Komiya, and M Igarashi
December 1985, Biochemical Society transactions,
S Saito, and Y Komiya, and M Igarashi
October 2001, Biology of reproduction,
S Saito, and Y Komiya, and M Igarashi
November 2013, Naunyn-Schmiedeberg's archives of pharmacology,
S Saito, and Y Komiya, and M Igarashi
April 2017, Neurochemical research,
Copied contents to your clipboard!