Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem. 1989

E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
Department of Animal Physiology, University of Groningen, Haren, The Netherlands.

The distribution of muscarinic acetylcholine receptor protein (mAChR) in the rat forebrain and upper brainstem was described by using a monoclonal antibody (M35) raised against mAChR purified from bovine forebrain homogenates. A method is investigated for light microscopic (LM) and electronmicroscopic (EM) immunocytochemical visualization of reactivity to mAChR-proteins. Putative cholinoceptive neurons including their dendrites were found immunoreactive in the cortical mantle, hippocampus, basal ganglia, amygdala, thalamus and several midbrain regions. In the neocortex, immunoprecipitate with M35 was mainly present in layer 5 pyramidal cells, some layer 3 pyramidal neurons and layer 2 stellate cells, all including their characteristic dendritic profiles of both basal and apical dendrites. In the hippocampus, a variety of pyramidal, granular and non-pyramidal celltypes were stained in various hippocampal cell layers, in the dentate hilus and in stratum oriens of cornu ammonis. Moreover, positively reacting cells occurred in central and lateral amygdala, all parts of the basal ganglia and ventral pallidum. The thalamus was very richly provided with labeled neurons in several nuclei but notably numerous in the ventrolateral, anteroventral and geniculate nuclei. In cortex and hippocampus also some staining of astrocytes occurred. Electron microscopic study of the intracellular distribution of M35 immunoreactivity in all cases showed dense precipitates in the soma cytoplasm in close association with the golgi apparatus, but conspicuous absence near the endoplasmic reticulum. Immunoprecipitate can be followed within the dendritic tree along the microtubular transport system, up to proximal and distal postsynaptic membrane positions, apposing non labeled presynaptic endings. Muscarinic receptor subtype recognition by M35 will be discussed by comparing M35 distribution with cholinergic innervation patterns, muscarinic receptor ligand binding studies and localization of muscarinic receptor subtype mRNAs.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
December 1985, Biochemical Society transactions,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
January 1994, Advances in experimental medicine and biology,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
January 1989, Neuroscience,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
February 1987, Biochemical Society transactions,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
November 1988, Biochemical pharmacology,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
August 1997, Neuroendocrinology,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
January 1991, Neurobiology of aging,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
January 1989, Journal fur Hirnforschung,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
January 1995, The Journal of comparative neurology,
E A van der Zee, and T Matsuyama, and A D Strosberg, and J Traber, and P G Luiten
June 1995, Brain research,
Copied contents to your clipboard!