Bradykinin-induced airway microvascular leakage is potentiated by captopril and phosphoramidon. 1991

J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
Department of Thoracic Medicine, National Heart and Lung Institute, Royal Brompton and National Heart Hospital, London, U.K.

Bradykinin can be inactivated by the peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), both of which are present in the airways. We evaluated the role of these enzymes in bradykinin-induced airway microvascular leakage and lung resistance in anesthetized and mechanically ventilated guinea pigs. We studied the effects of captopril (inhaled; 350 nmol), a specific ACE inhibitor, and phosphoramidon (inhaled; 7.5 nmol), a specific NEP inhibitor. Airway microvascular leakage was measured with the albumin marker Evans Blue dye (20 mg/kg i.v.), and airflow obstruction was measured as lung resistance (RL). Bradykinin was given by inhalation (0.1, 0.3 and 1 mM; 45 breaths), and caused a dose-dependent increase in both RL and airway microvascular leakage. Inhibition of NEP or ACE potentiated the bradykinin-induced microvascular leakage in main bronchi and proximal and distal intrapulmonary airways. However, only NEP inhibition significantly potentiated the extravasation of Evans Blue dye into the tracheal wall and lumen. The combined inhibition of NEP and ACE significantly potentiated plasma leakage at all airway levels, as well as the increase in RL induced by inhaled bradykinin. Recovery RL after one lung inflation significantly correlated with the extravasation of Evans Blue dye in the tissue at all airway levels, indicating that airway edema may have contributed to airway narrowing. We conclude that in the guinea pig, both NEP and ACE modulate bradykinin-induced airway microvascular leakage.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002216 Captopril A potent and specific inhibitor of PEPTIDYL-DIPEPTIDASE A. It blocks the conversion of ANGIOTENSIN I to ANGIOTENSIN II, a vasoconstrictor and important regulator of arterial blood pressure. Captopril acts to suppress the RENIN-ANGIOTENSIN SYSTEM and inhibits pressure responses to exogenous angiotensin. (S)-1-(3-Mercapto-2-methyl-1-oxopropyl)-L-proline,Capoten,Lopirin,SQ-14,225,SQ-14,534,SQ-14225,SQ-14534,SQ 14,225,SQ 14,534,SQ 14225,SQ 14534,SQ14,225,SQ14,534,SQ14225,SQ14534
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
January 1994, Enzyme & protein,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
November 1990, The American review of respiratory disease,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
July 1991, The American review of respiratory disease,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
May 1996, Brain injury,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
December 1993, The Journal of pharmacy and pharmacology,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
April 1992, British journal of pharmacology,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
November 1992, The American review of respiratory disease,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
June 2012, European journal of pharmacology,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
August 2002, The European respiratory journal,
J O Lötvall, and K Tokuyama, and P J Barnes, and K F Chung
August 1993, European journal of pharmacology,
Copied contents to your clipboard!