MDM2 chaperones the p53 tumor suppressor. 2007

Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
International Institute of Molecular and Cell Biology in Warsaw, 4 Trojdena Street, Warsaw, Poland.

The murine double minute (mdm2) gene encodes an E3 ubiquitin ligase that plays a key role in the degradation of p53 tumor suppressor protein. Nevertheless recent data highlight other p53-independent functions of MDM2. Given that MDM2 protein binds ATP, can interact with the Hsp90 chaperone, plays a role in the modulation of transcription factors and protection and activation of DNA polymerases, and is involved in ribosome assembly and nascent p53 protein biosynthesis, we have evaluated and found MDM2 protein to possess an intrinsic molecular chaperone activity. MDM2 can substitute for the Hsp90 molecular chaperone in promoting binding of p53 to the p21-derived promoter sequence. This reaction is driven by recycling of MDM2 from the p53 complex, triggered by binding of ATP to MDM2. The ATP binding mutant MDM2 protein (K454A) lacks the chaperone activity both in vivo and in vitro. Mdm2 cotransfected in the H1299 cell line with wild-type p53 stimulates efficient p53 folding in vivo but at the same time accelerates the degradation of p53. MDM2 in which one of the Zn(2+) coordinating residues is mutated (C478S or C464A) blocks degradation but enhances folding of p53. This is the first demonstration that MDM2 possesses an intrinsic molecular chaperone activity, indicating that the ATP binding function of MDM2 can mediate its chaperone function toward the p53 tumor suppressor.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051736 Proto-Oncogene Proteins c-mdm2 An E3 UBIQUITIN LIGASE that interacts with and inhibits TUMOR SUPPRESSOR PROTEIN P53. Its ability to ubiquitinate p53 is regulated by TUMOR SUPPRESSOR PROTEIN P14ARF. Mdm2 Protein,c-mdm2 Proto-Oncogene Protein,Double Minute 2 Protein,MDMX Protein,Mdm-2 Protein,Murine Double Minute 2 Protein,Mdm 2 Protein,Proto Oncogene Proteins c mdm2,Proto-Oncogene Protein, c-mdm2,c mdm2 Proto Oncogene Protein,c-mdm2, Proto-Oncogene Proteins
D018841 HSP90 Heat-Shock Proteins A class of MOLECULAR CHAPERONES whose members act in the mechanism of SIGNAL TRANSDUCTION by STEROID RECEPTORS. Heat-Shock Proteins 90,HSP90 Heat Shock Proteins,Heat Shock Proteins 90,Heat-Shock Proteins, HSP90

Related Publications

Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
September 2002, Trends in biochemical sciences,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
September 2007, The Journal of biological chemistry,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
January 2000, Gene,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
January 2014, Molecular biology of the cell,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
April 2015, Oncogene,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
August 2010, Genes & development,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
December 1997, FEBS letters,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
September 2002, Cancer research,
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
November 1996, Science (New York, N.Y.),
Bartosz Wawrzynow, and Alicja Zylicz, and Maura Wallace, and Ted Hupp, and Maciej Zylicz
March 1998, Cell,
Copied contents to your clipboard!