Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. 2007

Murali Gururajan, and Joshy Jacob, and Bali Pulendran
Vaccine Research Center, Emory University, Atlanta, Georgia, United States of America.

BACKGROUND Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen associated molecular patterns and trigger innate immunity leading to initiation of adaptive immunity. TLR-mediated activation of dendritic cells (DCs) is known to be a critical event in the initiation of cellular and humoral immune responses. Recent work however suggests that B cells also express TLRs, and that they can be activated via TLR ligands. However, whether such B cell activation occurs only on memory B cells, or whether it can also occur on truly naïve B cells remains controversial. Furthermore, the expression and functional relevance of TLRs on distinct subsets of B cells, which are known to play differential roles in humoral responses is not known. RESULTS In this study, we investigated the expression pattern of different TLRs in distinct subsets of murine B cells (naïve, memory, follicular, marginal zone, B-1 and peyer's patch). In contrast to the reported restricted expression pattern of TLRs in human peripheral blood naïve B cells, murine splenic naïve B cells express a variety of TLRs with the exception of TLR5 and 8. Consistent with this relatively broad expression pattern, murine naive B cells proliferate and secrete antibody to a variety of TLR agonists in vitro, in the absence of B-cell receptor cross-linking. In addition, we observed subtle differences in the antibody secretion pattern of follicular, marginal zone, B-1 and peyer's patch B-cell subsets. CONCLUSIONS Thus various B cell subsets, including truly naïve B cells, express multiple TLRs, and signaling via such TLRs results in their robust proliferation and antibody secretion, even in the absence of dendritic cell activation, or T-cell help.

UI MeSH Term Description Entries
D007156 Immunologic Memory The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus. Immune Memory,Immunological Memory,Memory, Immunologic,Immune Memories,Immunologic Memories,Immunological Memories,Memory, Immune,Memory, Immunological
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016175 B-Lymphocyte Subsets A classification of B-lymphocytes based on structurally or functionally different populations of cells. B-Cell Subsets,Tumor-Infiltrating B Cells,Tumor-Infiltrating B Lymphocytes,B Effector 1 Cells,B Effector 2 Cells,B-1 Cells,B-1 Lymphocytes,B-2 Lymphocytes,B-Lymphocytes, Effector,B1 Lymphocytes,B2 Lymphocytes,Be1 Cells,Be2 Cells,Effector B Cells,B 1 Cells,B 1 Lymphocytes,B 2 Lymphocytes,B Cell Subsets,B Cell, Tumor-Infiltrating,B Lymphocyte Subsets,B Lymphocyte, Tumor-Infiltrating,B-1 Cell,B-1 Lymphocyte,B-2 Lymphocyte,B-Cell Subset,B-Lymphocyte Subset,B-Lymphocyte, Effector,B1 Lymphocyte,B2 Lymphocyte,Be1 Cell,Be2 Cell,Cell, B-1,Cell, Be1,Cell, Be2,Effector B Cell,Effector B-Lymphocyte,Effector B-Lymphocytes,Lymphocyte, B-1,Lymphocyte, B-2,Lymphocyte, B1,Lymphocyte, B2,Tumor Infiltrating B Cells,Tumor Infiltrating B Lymphocytes,Tumor-Infiltrating B Cell,Tumor-Infiltrating B Lymphocyte

Related Publications

Murali Gururajan, and Joshy Jacob, and Bali Pulendran
March 2002, Journal of immunology (Baltimore, Md. : 1950),
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
January 2015, PloS one,
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
June 2018, Immunology letters,
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
January 2012, Frontiers in bioscience (Landmark edition),
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
January 2011, Clinical immunology (Orlando, Fla.),
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
March 2005, Veterinary immunology and immunopathology,
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
March 2018, Heliyon,
Murali Gururajan, and Joshy Jacob, and Bali Pulendran
February 2010, Experimental and molecular pathology,
Copied contents to your clipboard!