Tone-sequence analysis in the auditory cortex of awake macaque monkeys. 2008

Michael Brosch, and Henning Scheich
Leibniz-Institut für Neurobiologie, Brenneckestrasse 6, 3911, Magdeburg, Germany. brosch@ifn-magdeburg.de

The present study analyzed neuronal responses to two-tone sequences in the auditory cortex of three awake macaque monkeys. The monkeys were passively exposed to 430 different two-tone sequences, in which the frequency of the first tone and the interval between the first and the second tone in the sequence were systematically varied. The frequency of the second tone remained constant and was matched to the single-tone frequency sensitivity of the neurons. Multiunit activity was recorded from 109 sites in the primary auditory cortex and posterior auditory belt. We found that the first tone in the sequence could inhibit or facilitate the response to the second tone. Type and magnitude of poststimulatory effects depended on the sequence parameters and were related to the single-tone frequency sensitivity of neurons, similar to previous observations in the auditory cortex of anesthetized animals. This suggests that some anesthetics produce, at the most, moderate changes of poststimulatory inhibition and facilitation in the auditory cortex. Hence many properties of the sequence-sensitivity of neurons in the auditory cortex measured in anesthetized preparations can be applied to neurons in the auditory cortex of awake subjects.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010470 Perceptual Masking The interference of one perceptual stimulus with another causing a decrease or lessening in perceptual effectiveness. Masking, Perceptual,Maskings, Perceptual,Perceptual Maskings
D010897 Pitch Discrimination The ability to differentiate sound frequency or pitch. Discrimination, Pitch,Pitch Discriminations
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Michael Brosch, and Henning Scheich
June 2000, Cerebral cortex (New York, N.Y. : 1991),
Michael Brosch, and Henning Scheich
January 1999, Brain research,
Michael Brosch, and Henning Scheich
March 1999, The European journal of neuroscience,
Michael Brosch, and Henning Scheich
October 1998, The Journal of comparative neurology,
Michael Brosch, and Henning Scheich
May 1998, The Journal of comparative neurology,
Michael Brosch, and Henning Scheich
October 2005, Neuron,
Michael Brosch, and Henning Scheich
June 2005, Neuroreport,
Michael Brosch, and Henning Scheich
June 1997, Sheng li xue bao : [Acta physiologica Sinica],
Michael Brosch, and Henning Scheich
September 1993, The Journal of comparative neurology,
Copied contents to your clipboard!