Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. 2007

Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
Unité de Biologie Cellulaire du Noyau, Unité de Génétique des Interactions Macromoléculaires, CNRS URA 2171, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.

Ribosome biogenesis requires equimolar amounts of four rRNAs and all 79 ribosomal proteins (RP). Coordinated regulation of rRNA and RP synthesis by eukaryotic RNA polymerases (Pol) I, III, and II is a key requirement for growth control. Using a novel global genetic approach, we showed that the absence of Hmo1 becomes lethal when combined with mutations of components of either the RNA Pol II or Pol I transcription machineries, of specific RP, or of the TOR pathway. Hmo1 directly interacts with both the region transcribed by Pol I and a subset of RP gene promoters. Down-regulation of Hmo1 expression affects RP gene expression. Upon TORC1 inhibition, Hmo1 dissociates from ribosomal DNA (rDNA) and some RP gene promoters simultaneously. Finally, in the absence of Hmo1, TOR-dependent repression of RP genes is alleviated. Therefore, we show here that Saccharomyces cerevisiae Hmo1 is directly involved in coordinating rDNA transcription by Pol I and RP gene expression by Pol II under the control of the TOR pathway.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
December 2011, Gene,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
June 2001, Genetics,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
October 2002, The EMBO journal,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
March 1995, The Biochemical journal,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
March 2013, Development (Cambridge, England),
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
December 2004, Cell,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
July 2014, Cell reports,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
December 2013, Biochemical Society transactions,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
Axel B Berger, and Laurence Decourty, and Gwenaël Badis, and Ulf Nehrbass, and Alain Jacquier, and Olivier Gadal
December 2017, Nucleic acids research,
Copied contents to your clipboard!