Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. 2002

Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
Laboratoire de Physio-Génomique, Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Bâtiment 142, F-91191 Gif-sur-Yvette, France.

Hmo1 is one of seven HMG-box proteins of Saccharo myces cerevisiae. Null mutants have a limited effect on growth. Hmo1 overexpression suppresses rpa49-Delta mutants lacking Rpa49, a non-essential but conserved subunit of RNA polymerase I corresponding to the animal RNA polymerase I factor PAF53. This overexpression strongly increases de novo rRNA synthesis. rpa49-Delta hmo1-Delta double mutants are lethal, and this lethality is bypassed when RNA polymerase II synthesizes rRNA. Hmo1 co-localizes with Fob1, a known rDNA-binding protein, defining a narrow territory adjacent to the nucleoplasm that could delineate the rDNA nucleolar domain. These data identify Hmo1 as a genuine RNA polymerase I factor acting synergistically with Rpa49. As an HMG-box protein, Hmo1 is remotely related to animal UBF factors. hmo1-Delta and rpa49-Delta are lethal with top3-Delta DNA topoisomerase (type I) mutants and are suppressed in mutants lacking the Sgs1 DNA helicase. They are not affected by top1-Delta defective in Top1, the other eukaryotic type I topoisomerase. Conversely, rpa34-Delta mutants lacking Rpa34, a non-essential subunit associated with Rpa49, are lethal in top1-Delta but not in top3-Delta.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA

Related Publications

Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
December 2013, Nucleic acids research,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
May 2000, Biochemical and biophysical research communications,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
May 2006, Molecular and cellular biology,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
November 2007, Molecular and cellular biology,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
June 1997, The EMBO journal,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
May 1994, Science (New York, N.Y.),
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
December 2004, The Journal of biological chemistry,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
May 1994, FEBS letters,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
August 1990, Biochimica et biophysica acta,
Olivier Gadal, and Sylvie Labarre, and Claire Boschiero, and Pierre Thuriaux
February 1993, The EMBO journal,
Copied contents to your clipboard!