Inactivation of hepatic enzymes by inhalant nitrite--in vivo and in vitro studies. 2007

Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260-1200, USA.

We examined the effects of acute isobutyl nitrite (ISBN) exposure on the activity of several hepatic enzymes. Two strains of adult male mice (Balb/c and C57BL/6) were exposed to 900 ppm ISBN or ambient air for 45 minutes. The enzyme activity of hepatic cytochrome P450 (CYP)-mediated deethylation, glutathione S-transferase (GST), and carboxylesterase (CBE) was monitored through the substrates 3-cyano-7-ethoxycoumarin (CEC), 1-chloro-2,4-dinitrobenzene, and p-nitrophenyl acetate, respectively. Acute ISBN exposure led to a significant reduction in hepatic CYP-mediated CEC deethylation, GST, and CBE activity in Balb/c mice (of 81.5%, 74.7%, and 25.2%, respectively, vs control mice, each at P < .05) when livers were harvested immediately after inhalant exposure. The corresponding decreases in C57BL/6 mice were smaller (with reductions of 21.8%, 18.8%, and 13.3%, respectively, each at P < .05). This enzyme activity, tested in C57BL/6 mice only, returned to control values after a 24-hour period of nonexposure. Follow-up mechanistic investigations using rat liver GST indicated that ISBN-mediated enzyme inactivation was not caused by its metabolites: inorganic nitrite ion (NO2-) or nitric oxide. This inactivation could be prevented, but not reversed, by added glutathione, suggesting irreversible protein oxidation. Using different NO donors as comparative agents, we found that GST inactivation by ISBN was not associated with protein S-nitrosylation or disulfide formation, but with tyrosine nitration. Inhalant nitrite exposure, therefore, led to a significant reduction in hepatic enzyme activity in mice, possibly through tyrosine nitration of hepatic proteins. This effect raises the possibility of drug-drug metabolic interactions from inhalant nitrite abuse. However, determining the applicability of these findings to humans will require further study.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1989, Biotechnology advances,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
October 2003, Biochemical and biophysical research communications,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1989, Journal of biochemical toxicology,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1995, Advances in experimental medicine and biology,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1971, Experientia,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
October 2003, Otolaryngologic clinics of North America,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
October 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
May 1974, European journal of biochemistry,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1977, Annual review of microbiology,
Steven G Turowski, and Kate E Jank, and Ho-Leung Fung
January 1988, Archives of toxicology,
Copied contents to your clipboard!