Mechanisms of chloroform-induced hepatotoxicity: oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. 2007

Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

The role of mitochondrial permeability transition (MPT) and oxidative stress in chloroform toxicity was determined in freshly isolated female B6C3F1 mouse hepatocytes. Incubation of chloroform (12 mM) with hepatocytes resulted in cell death (alanine aminotransferase release and propidium iodide fluorescence). Chloroform had volatilized from the incubation and glutathione was depleted by 1 h; however, toxicity was not significantly different between control and chloroform-incubated cells. Hepatocytes were washed and reincubated in fresh media at 1 h. Subsequent reincubation of chloroform-treated hepatocytes resulted in significant toxicity at 3-5 h. Inclusion of the MPT inhibitor cyclosporine A or the antioxidant N-acetylcysteine (NAC) in the reincubation media at 1 h prevented toxicity. Confocal microscopy studies with the dye calcein AM indicated MPT that was blocked by cyclosporine A or NAC. Fluorescence microscopy studies utilizing JC-1 indicated loss of mitochondrial membrane potential, which was also blocked by cyclosporine A or NAC. Dichlorofluorescein fluorescence increased during the reincubation phase, indicating increased oxidative stress, and the increase was blocked by cyclosporine A. Since oxidative stress may occur by peroxynitrite, its role in toxicity was examined. Either of the nitric oxide synthase inhibitors N(G)-methyl-L-arginine (L-NMMA) and 7-nitroindazole (7-NI) at 1 h blocked toxicity. Western blot analysis of hepatocytes for 3-nitrotyrosine in proteins, a biomarker of peroxynitrite, indicated one major nitrated protein at 81 kD. Nitration of this protein was inhibited by cyclosporine A, L-NMMA, 7-NI, or NAC. The data indicate that chloroform-induced cell death occurs in two phases: a metabolic phase characterized by glutathione depletion, and an oxidative phase characterized by MPT and protein nitration.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002725 Chloroform A commonly used laboratory solvent. It was previously used as an anesthetic, but was banned from use in the U.S. due to its suspected carcinogenicity. Trichloromethane
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
February 2005, The Journal of pharmacology and experimental therapeutics,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
November 1980, Biochemical pharmacology,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
April 1998, Toxicology and applied pharmacology,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
April 2001, FEBS letters,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
November 2005, Toxicology and applied pharmacology,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
April 2000, The Journal of biological chemistry,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
November 2004, Hepatology (Baltimore, Md.),
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
January 2012, Advanced pharmaceutical bulletin,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
January 2016, Xenobiotica; the fate of foreign compounds in biological systems,
Angela S Burke, and Kelly Redeker, and Richard C Kurten, and Laura P James, and Jack A Hinson
April 2004, Journal of hepatology,
Copied contents to your clipboard!