The effects of dose and route on the toxicokinetics and disposition of 1-butyl-3-methylimidazolium chloride in male F-344 rats and female B6C3F1 mice. 2008

I G Sipes, and G A Knudsen, and R K Kuester
Department of Pharmacology, College of Medicine, The University of Arizona, P.O. Box 245050, Tucson, AZ 85724-5050, USA. sipes@email.arizona.edu

These studies characterize the effect of dose and route of administration on the disposition and elimination of the ionic liquid, 1-butyl-3-methylimidazolium chloride (Bmim-Cl). After i.v. (5 mg/kg) or oral (50 mg/kg) administration to male F-344 rats [(14)C]Bmim-Cl detected in blood decreased rapidly. Clearance rates from the blood after i.v. and oral administration were similar (7.4 and 11.9 ml/min, respectively). Systemic bioavailability was determined to be 62.1% of a 50 mg/kg dose in rats. Urinary excretion of the parent compound by rats was the major route of elimination (i.v.: 91% in 24 h; oral: 55-74% in 24 h). The rates and routes of elimination were not affected by escalation of dose (0.5-50 mg/kg) or repeated oral administration (five daily administrations, 50 mg/kg) and were similar in male rats and B6C3F1 female mice (86-95% of dose eliminated in 24 h). Apparent systemic exposure to Bmim-Cl after dermal administration was dependent upon vehicle, as assessed by the percentage of dose eliminated in urine after application in a particular vehicle (water: 1%; ethanol/water: 3%; and dimethylformamide/water: 13% of dose). Regardless of gender, species, dose, route, or number of exposures, high-pressure liquid chromatography-UV/visible-radiometric analyses of urine samples showed a single peak that coeluted with the Bmim-Cl standard. These studies illustrate that systemic bioavailability of Bmim-Cl is high, tissue disposition and metabolism are negligible, and absorbed compound is extensively extracted by the kidney and eliminated in the urine as the parent compound.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004333 Drug Administration Routes The various ways of administering a drug or other chemical to a site in a patient or animal from where the chemical is absorbed into the blood and delivered to the target tissue. Administration Routes, Drug,Administration Route, Drug,Drug Administration Route,Route, Drug Administration,Routes, Drug Administration
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent

Related Publications

I G Sipes, and G A Knudsen, and R K Kuester
April 2009, Drug metabolism and disposition: the biological fate of chemicals,
I G Sipes, and G A Knudsen, and R K Kuester
April 1993, Fundamental and applied toxicology : official journal of the Society of Toxicology,
I G Sipes, and G A Knudsen, and R K Kuester
October 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
I G Sipes, and G A Knudsen, and R K Kuester
April 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
I G Sipes, and G A Knudsen, and R K Kuester
April 2007, Toxicological sciences : an official journal of the Society of Toxicology,
I G Sipes, and G A Knudsen, and R K Kuester
April 1994, Toxicology and applied pharmacology,
I G Sipes, and G A Knudsen, and R K Kuester
February 1989, Toxicology and applied pharmacology,
I G Sipes, and G A Knudsen, and R K Kuester
December 2016, Toxicological sciences : an official journal of the Society of Toxicology,
I G Sipes, and G A Knudsen, and R K Kuester
November 2012, Carbohydrate polymers,
Copied contents to your clipboard!