Characterization of the disposition and toxicokinetics of N-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2. 2009

Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
Department of Pharmacology, College of Medicine, The University of Arizona, P.O. Box 245050, Tucson, AZ 85724-5050, USA.

Studies were conducted to characterize the effect of dose and route of administration on the disposition of N-butylpyridinium chloride (NBuPy-Cl), an ionic liquid with solvent properties. Urine was the major route of NBuPy-Cl excretion after intravenous (5 mg/kg), single oral (0.5, 5, or 50 mg/kg), or repeated oral (50 mg/kg/day, 5 days) administration to male F-344 rats and single oral (50 mg/kg) administration to female B6C3F1 mice. Depending on the vehicle, absorption after dermal application (5 mg/kg, 125 microg/cm(2)) was 10 to 35% at 96 h. After the single intravenous dose, the blood concentration of NBuPy-Cl decreased in a biphasic manner with an elimination half-life of 2.2 h and a clearance of 7 ml/min. After single oral administration of NBuPy-Cl (50 mg/kg), maximum blood concentration was reached at 1.3 h, and the bioavailability was determined to be 47% at 6 h based on the blood toxicokinetics and 67% at 72 h based on urinary excretion. In all the urine and blood samples, only the parent compound was detected. Coadministration of NBuPy-Cl and inulin (by intravenous injection) revealed that the clearance of NBuPy-Cl exceeded the rat glomerular filtration rate. After incubation with Chinese hamster ovary cells expressing human organic cation transporter 2 (hOCT2), NBuPy-Cl was transported effectively (K(t) = 18 microM), and also a potent inhibitor of hOCT2 mediated tetraethylammonium transport (IC(50) = 2.3 microM). In summary, NBuPy-Cl is partially absorbed from the gastrointestinal tract and eliminated rapidly in the urine as parent compound most likely by renal glomerular filtration and OCT2-mediated secretion.

UI MeSH Term Description Entries
D008297 Male Males
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000075102 Organic Cation Transporter 2 Organic cation transporter consisting of twelve transmembrane domains and expressed primarily in the kidney. It transports a wide range of metabolites, drugs, and neurotransmitters from the blood to the KIDNEY TUBULES, including DOPAMINE; SEROTONIN; CHOLINE; and CISPLATIN. OCT2 Protein,SLC22A2 Protein,Solute Carrier Family 22 Member 2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
February 2008, Drug metabolism and disposition: the biological fate of chemicals,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
October 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
April 1993, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
April 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
November 2011, Xenobiotica; the fate of foreign compounds in biological systems,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
February 1989, Toxicology and applied pharmacology,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
December 2012, Xenobiotica; the fate of foreign compounds in biological systems,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
April 1994, Toxicology and applied pharmacology,
Y Cheng, and S H Wright, and M J Hooth, and I G Sipes
April 1998, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!