Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards. 2008

Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
Laboratory of Neurotoxicology, National Institute of Mental Health, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.

We have explored a general approach for the determination of absolute amounts and the relative stoichiometry of proteins in a mixture using fluorescence and mass spectrometry. We engineered a gene to express green fluorescent protein (GFP) with a synthetic fusion protein (GAB-GFP) in Escherichia coli to function as a spectroscopic standard for the quantification of an analogous stable isotope-labeled, non-fluorescent fusion protein (GAB*) and for the quantification and stoichiometric analysis of purified transducin, a heterotrimeric G-protein complex. Both GAB-GFP and GAB* contain concatenated sequences of specific proteotypic peptides that are derived from the alpha, beta, and gamma protein subunits of transducin and that are each flanked by spacer regions that maintain the native proteolytic properties for these peptide fragments. Spectroscopic quantification of GAB-GFP provided a molar scale for mass spectrometric ratios from tryptic peptides of GAB* and defined molar responses for mass spectrometric signal intensities from a purified transducin complex. The stoichiometry of transducin subunits alpha, beta, and gamma was measured to be 1:1.1:1.15 over a 5-fold range of labeled internal standard with a relative standard deviation of 9%. Fusing a unique genetically coded spectroscopic signal element with concatenated proteotypic peptides provides a powerful method to accurately quantify and determine the relative stoichiometry of multiple proteins present in complexes or mixtures that cannot be readily assessed using classical gravimetric, enzymatic, or antibody-based technologies.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
May 2016, Proteomics,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
March 2022, Journal of proteomics,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
December 2014, Journal of proteome research,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
January 2021, Journal of pharmaceutical sciences,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
March 2021, Analytical chemistry,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
January 2018, Chemical communications (Cambridge, England),
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
May 2019, Journal of agricultural and food chemistry,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
September 2012, Journal of the American Society for Mass Spectrometry,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
March 2010, Analytical chemistry,
Dhaval Nanavati, and Marjan Gucek, and Jacqueline L S Milne, and Sriram Subramaniam, and Sanford P Markey
February 2021, Protein expression and purification,
Copied contents to your clipboard!