Structures of human deoxycytidine kinase product complexes. 2007

Erika V Soriano, and Valerie C Clark, and Steven E Ealick
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.

Human deoxycytidine kinase (dCK) is involved in the nucleotide-biosynthesis salvage pathway and has also been shown to phosphorylate several antitumor and antiviral prodrugs. The structures of dCK alone and the dead-end complex of dCK with substrate nucleoside and product ADP or UDP have previously been reported; however, there is currently no structure available for a substrate or product complex. Here, the structures of dCK complexes with the products dCMP, UDP and Mg2+ ion, and with dAMP, UDP and Mg2+ ion are reported. Structural comparisons show that the product complexes with UDP and a dead-end complex with substrate and UDP have similar active-site conformations.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D003843 Deoxycytidine Monophosphate Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2'-,3'- or 5- positions. DCMP,Deoxycytidylic Acid,Deoxycytidylic Acids,Acid, Deoxycytidylic,Acids, Deoxycytidylic,Monophosphate, Deoxycytidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014530 Uridine Diphosphate A uracil nucleotide containing a pyrophosphate group esterified to C5 of the sugar moiety. UDP,Uridine Pyrophosphate,Diphosphate, Uridine,Pyrophosphate, Uridine
D046912 Multiprotein Complexes Macromolecular complexes formed from the association of defined protein subunits. Macromolecular Protein Complexes,Complexes, Macromolecular Protein,Complexes, Multiprotein,Protein Complexes, Macromolecular

Related Publications

Erika V Soriano, and Valerie C Clark, and Steven E Ealick
November 1989, Biochemistry,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 1993, Advances in enzyme regulation,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
September 1992, Molecular pharmacology,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 1993, European journal of cancer (Oxford, England : 1990),
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 1986, Advances in experimental medicine and biology,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 2001, Nucleosides, nucleotides & nucleic acids,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 2008, Drug metabolism and pharmacokinetics,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
December 2004, Journal of molecular biology,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
February 1991, Proceedings of the National Academy of Sciences of the United States of America,
Erika V Soriano, and Valerie C Clark, and Steven E Ealick
January 1989, Biochemistry,
Copied contents to your clipboard!