Localisation of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy. 1991

C M Hackney, and D N Furness, and D J Benos
Department of Communication and Neuroscience, Keele University, Staffordshire, UK.

Displacement of the apical stereociliary bundle of cochlear hair cells mechanically gates transducer channels. Knowing the position of the channels with regard to the apical structures of the hair cell could indicate how this mechanism operates. At present, there is conflicting evidence regarding their precise location; the channels have been suggested to be located either towards the base of the stereocilia or at the tips where they could be operated by extracellular links running from the top of shorter stereocilia to the sides of adjacent taller ones. The channels have been shown to be reversibly blocked by amiloride. This has prompted us to use a polyclonal antibody raised against another amiloride-sensitive channel to search for them using immunolabelling. The location of the primary antibody has been revealed using pre-embedding labelling with a colloidal gold-conjugated secondary antibody followed by scanning transmission electron microscopy of semi-thin sections. In this way, more complete information on the relationship of the labelling to the three-dimensional organisation of the stereociliary bundle has been obtained in comparison with previous immunofluorescence and transmission electron microscopic results. Labelling occurs in discrete areas towards the tips of the stereocilia, one of the possible sites for the transducer channels, predominantly between the membranes of shorter and taller stereocilia.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron

Related Publications

C M Hackney, and D N Furness, and D J Benos
August 2003, Nature neuroscience,
C M Hackney, and D N Furness, and D J Benos
October 2014, Proceedings of the National Academy of Sciences of the United States of America,
C M Hackney, and D N Furness, and D J Benos
May 1992, Annals of the New York Academy of Sciences,
C M Hackney, and D N Furness, and D J Benos
December 2019, The Journal of physiology,
C M Hackney, and D N Furness, and D J Benos
January 2017, Frontiers in molecular neuroscience,
C M Hackney, and D N Furness, and D J Benos
October 2019, Proceedings of the National Academy of Sciences of the United States of America,
C M Hackney, and D N Furness, and D J Benos
October 2013, Journal of computational neuroscience,
C M Hackney, and D N Furness, and D J Benos
July 1992, Trends in neurosciences,
C M Hackney, and D N Furness, and D J Benos
January 1988, Annual review of biophysics and biophysical chemistry,
C M Hackney, and D N Furness, and D J Benos
October 2009, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!