Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. 2014

Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom;

Mechanotransduction in the auditory and vestibular systems depends on mechanosensitive ion channels in the stereociliary bundles that project from the apical surface of the sensory hair cells. In lower vertebrates, when the mechanoelectrical transducer (MET) channels are opened by movement of the bundle in the excitatory direction, Ca(2+) entry through the open MET channels causes adaptation, rapidly reducing their open probability and resetting their operating range. It remains uncertain whether such Ca(2+)-dependent adaptation is also present in mammalian hair cells. Hair bundles of both outer and inner hair cells from mice were deflected by using sinewave or step mechanical stimuli applied using a piezo-driven fluid jet. We found that when cochlear hair cells were depolarized near the Ca(2+) reversal potential or their hair bundles were exposed to the in vivo endolymphatic Ca(2+) concentration (40 µM), all manifestations of adaptation, including the rapid decline of the MET current and the reduction of the available resting MET current, were abolished. MET channel adaptation was also reduced or removed when the intracellular Ca(2+) buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was increased from a concentration of 0.1 to 10 mM. The findings show that MET current adaptation in mouse auditory hair cells is modulated similarly by extracellular Ca(2+), intracellular Ca(2+) buffering, and membrane potential, by their common effect on intracellular free Ca(2+).

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D042541 Intracellular Space The area within CELLS. Subcellular Space,Intracellular Spaces,Space, Intracellular,Space, Subcellular,Spaces, Intracellular,Spaces, Subcellular,Subcellular Spaces

Related Publications

Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
August 2003, Nature neuroscience,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
August 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
December 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
October 2013, Journal of computational neuroscience,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
June 1992, Proceedings. Biological sciences,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
September 1991, Scanning microscopy,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
May 1992, Annals of the New York Academy of Sciences,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
August 2006, Neuroreport,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
December 2019, The Journal of physiology,
Laura F Corns, and Stuart L Johnson, and Corné J Kros, and Walter Marcotti
January 2017, Frontiers in molecular neuroscience,
Copied contents to your clipboard!