Role of cellular phosphatase cdc25C in herpes simplex virus 1 replication. 2008

Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
The University of Chicago, Marjorie B. Kovler Viral Oncology Laboratories, 910 East 58th St., Chicago, IL 60637. bernard.roizman@bsd.uchicago.edu.

Earlier studies have shown that in herpes simplex virus 1-infected cells, ICP22 upregulates the accumulation of a subset of gamma(2) proteins exemplified by the products of the U(L)38, U(L)41, and U(S)11 genes. The ICP22-dependent process involves degradation of cyclins A and B1, the stabilization and activation of cdc2, physical interaction of activated cdc2 with the U(L)42 DNA synthesis processivity factor, and recruitment and phosphorylation of topoisomerase IIalpha by the cdc2/U(L)42 complex. Activation of cdc2, the first step in the process, is a key function of the mitotic phosphatase cdc25C. To define the role of cdc25C, we probed some features of the ICP22-dependent pathway of upregulation of gamma(2) genes in cdc25C(-/-) cells and in cdc25C(+/+) cells derived from sibling mice. We report that cyclin B1 turned over in cdc25C(+/+) or cdc25C(-/-) cells at the same rate, that cdc2 increased in amount, and that U(S)11 and U(L)38 proteins and infectious virus accumulated in smaller amounts than in wild-type infected cells. The reduction in U(L)38 protein accumulation and virus was greater in cdc25C(-/-) cells infected with virus lacking ICP22 than in cells infected with wild-type virus. We conclude that cdc25C phosphatase plays a role in viral replication and that this role extends beyond its function of activating cdc2 for initiation of the ICP22-dependent cascade for upregulation of gamma(2) gene expression.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D016203 CDC2 Protein Kinase Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated. Cdk1 Protein Kinase,Cyclin-Dependent Kinase 1,Histone Kinase p34(cdc2),Protein p34cdc2,p34cdc2 Protein,cdc2+ Protein,cdk1 Kinase,Cyclin Dependent Kinase 1,Protein Kinase, CDC2,Protein Kinase, Cdk1,p34cdc2, Protein
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
January 2013, Journal of virology,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
July 2017, Journal of virology,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
January 1989, Advances in virus research,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
December 2020, Viruses,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
May 1998, Journal of virology,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
August 2013, Journal of virology,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
January 1995, Biochimie,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
January 2018, Intervirology,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
October 2000, Acta virologica,
Benjamin A Smith-Donald, and Lizette O Durand, and Bernard Roizman
January 1997, Annual review of biochemistry,
Copied contents to your clipboard!