Transcript end mapping and analysis of RNA editing in plant mitochondria. 2007

Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
Genetische Botanik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, Kiel, Germany.

Mitochondria are genetic compartments with their own enzymatic equipment for maintenance and expression of their genetic information. As in all genetic systems, gene expression has to be regulated, and in mitochondria this also has to be coordinated with the expression of nuclear-encoded mitochondrial proteins. Presently, there is virtually no information available about the mechanistic details and the enzymes involved in these processes. There is still much to be learned about how plant mitochondrial gene expression is managed and to what extent the contribution of transcription initiation and posttranscriptional processes, respectively, contribute to this control. As one prerequisite for better understanding of the mechanisms and regulatory controls, more fundamental data on mitochondrial transcription initiation and posttranscriptional RNA processing are necessary. As part of the essential methodology, we present methods for the analysis of the 5' and 3' extremities of mitochondrial transcripts and the identification of transcription initiation sites. An in organello system is described for the functional investigation of ribonucleic acid editing in plant mitochondria.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D000077278 RNA, Mitochondrial RNA molecules encoded by the MITOCHONDRIAL GENOME. Mitochondrial RNA,mtRNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
November 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
December 1989, Science (New York, N.Y.),
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
August 1993, Seminars in cell biology,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
October 1989, Nature,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
October 1996, Plant molecular biology,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
January 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
January 1995, Biochimie,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
January 2008, Mitochondrion,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
January 1999, The Journal of heredity,
Frank Kempken, and Nina Bolle, and Joachim Forner, and Stefan Binder
December 2006, Current genetics,
Copied contents to your clipboard!