RNA editing in higher plant mitochondria: analysis of biochemistry and specificity. 1995

W Yu, and T Fester, and H Bock, and W Schuster
Institut für Genbiologische Forschung Berlin GmbH, Germany.

RNA editing alters genomically encoded cytidines to uridines posttranscriptionally in higher plant mitochondria. Most of these editing events occur in translated regions and consequently alter the amino acid sequence. In Oenothera berteriana more than 500 editing sites have been detected and the total number of editing sites exceeds 1000 sites in this mitochondrial genome. To identify the components involved in this process we investigated the factors determining the specificity of RNA editing and the apparent conversion of cytidine to uridine residues. The possible biochemical reactions responsible for RNA editing in plant mitochondria are de- or transamination, base substitution and nucleotide replacement. In order to discriminate between these different biochemical mechanisms we followed the fate of the sugar-phosphate backbone by analysing radiolabeled nucleotides after incorporation into high molecular mass RNA. Plant mitochondria were supplied with [alpha-32P]CTP to radiolabel CMP residues in newly synthesized transcripts. Radiolabeled mtRNA was extracted and digested with nuclease P1 to hydrolyse the RNA to monophosphates. The resulting monophosphates were analysed on one- and two-dimensional TLC systems to separate pC from pU. Radiolabeled pU was detected in increasing quantities during the course of incubation. These results suggest that RNA editing in plant mitochondria involves either a deamination or a transglycosylation reaction. The editing product was identified as uridine and not as a hypermodified nucleotide which is recognized as uridine. Similar results have been obtained by incubating in vitro transcribed mRNAs with mitochondrial lysates indicating that RNA editing and transcription is not directly linked in plant mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003562 Cytidine A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE. Cytosine Ribonucleoside,Cytosine Riboside,Ribonucleoside, Cytosine,Riboside, Cytosine
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017393 RNA Editing A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE, KINETOPLASTIDA). RNA, Messenger, Editing,Editing, RNA,Editings, RNA,RNA Editings
D018749 RNA, Plant Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis. Plant RNA

Related Publications

W Yu, and T Fester, and H Bock, and W Schuster
January 1999, The Journal of heredity,
W Yu, and T Fester, and H Bock, and W Schuster
November 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
W Yu, and T Fester, and H Bock, and W Schuster
December 1989, Science (New York, N.Y.),
W Yu, and T Fester, and H Bock, and W Schuster
August 1993, Seminars in cell biology,
W Yu, and T Fester, and H Bock, and W Schuster
October 1989, Nature,
W Yu, and T Fester, and H Bock, and W Schuster
October 1996, Plant molecular biology,
W Yu, and T Fester, and H Bock, and W Schuster
January 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
W Yu, and T Fester, and H Bock, and W Schuster
January 2007, Methods in molecular biology (Clifton, N.J.),
W Yu, and T Fester, and H Bock, and W Schuster
January 2001, Journal of molecular evolution,
W Yu, and T Fester, and H Bock, and W Schuster
January 2008, Mitochondrion,
Copied contents to your clipboard!