Flufenamic acid affects multiple currents and causes intracellular Ca2+ release in Aplysia bag cell neurons. 2008

Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
Department of Physiology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.

Flufenamic acid (FFA) is a nonsteroidal antiinflammatory agent, commonly used to block nonselective cation channels. We previously reported that FFA potentiated, rather than inhibited, a cation current in Aplysia bag cell neurons. Prompted by this paradoxical result, the present study examined the effects of FFA on membrane currents and intracellular Ca2+ in cultured bag cell neurons. Under whole cell voltage clamp, FFA evoked either outward (I out) or inward (I in) currents. I out had a rapid onset, was inhibited by the K+ channel blocker, tetraethylammonium, and was associated with both an increase in membrane conductance and a negative shift in the whole cell current reversal potential. I in developed more slowly, was inhibited by the cation channel blocker, Gd3+, and was concomitant with both an increased conductance and positive shift in reversal potential. FFA also enhanced the use-dependent inactivation and caused a positive-shift in the activation curve of the voltage-dependent Ca2+ current. Furthermore, as measured by ratiometric imaging, FFA produced a rise in intracellular Ca2+ that persisted in the absence of extracellular Ca2+ and was reduced by depleting either the endoplasmic reticulum and/or mitochondrial stores. Ca2+ appeared to be involved in the activation of I in, as strong intracellular Ca2+ buffering effectively eliminated I in but did not alter I out. Finally, the effects of FFA were likely not due to block of cyclooxygenase given that the general cyclooxygenase inhibitor, indomethacin, failed to evoke either current. That FFA influences a number of neuronal properties needs to be taken into consideration when employing it as a cation channel antagonist.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005439 Flufenamic Acid An anthranilic acid derivative with analgesic, anti-inflammatory, and antipyretic properties. It is used in musculoskeletal and joint disorders and administered by mouth and topically. (From Martindale, The Extra Pharmacopoeia, 30th ed, p16) Dignodolin,Acid, Flufenamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
June 2016, Journal of neurophysiology,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
March 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
February 2015, Journal of neurophysiology,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
July 2008, Journal of neurophysiology,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
September 2010, Brain research,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
June 1990, Brain research,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
March 2010, Journal of neurophysiology,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
February 2010, The European journal of neuroscience,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
January 2000, The Journal of physiology,
Kate E Gardam, and Julia E Geiger, and Charlene M Hickey, and Anne Y Hung, and Neil S Magoski
May 2023, Journal of neurophysiology,
Copied contents to your clipboard!