Novobiocin inhibits the self-splicing of the primary transcripts of T4 phage thymidylate synthase gene. 2008

Wi Su Jung, and Sook Shin, and In Kook Park
Department of Life Science, Dongguk University, Seoul, Korea.

Effects of the antibiotic novobiocin on the self-splicing of primary transcripts of the phage T4 thymidylate synthase gene (td) have been investigated. Novobiocin at 10 mM concentration inhibited the splicing by about 5% but at 40 mM concentration the splicing rate was inhibited by about 50%. The novobiocin inhibition of the self-splicing reaction was not reversed even at a high concentration (200 microM) of guanosine. However, increasing the Mg(2+) ion concentrations up to 20 mM almost fully restored the splicing activity to the normal splicing level. The double reciprocal plot analysis demonstrated that novobiocin acts as a mixed noncompetitive inhibitor for the td intron RNA with a K (i) of 90 mM. The splicing inhibition by novobiocin was strongly dependent on Mg(2+) ion concentration, indicating electrostatic interactions with the td intron RNA. It is likely that the antibiotic novobiocin may interfere with the catalytic actions of Mg(2+) ion in the splicing reaction of the td intron RNA.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009675 Novobiocin An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) Crystallinic Acid,Streptonivicin,Novobiocin Calcium,Novobiocin Sodium,Novobiocin, Monosodium Salt,Calcium, Novobiocin,Monosodium Salt Novobiocin,Sodium, Novobiocin
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013940 Thymidylate Synthase An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45. Thymidylate Synthetase,Synthase, Thymidylate,Synthetase, Thymidylate
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Wi Su Jung, and Sook Shin, and In Kook Park
September 1985, The Journal of biological chemistry,
Wi Su Jung, and Sook Shin, and In Kook Park
May 1998, Genes & development,
Wi Su Jung, and Sook Shin, and In Kook Park
January 1990, Annual review of genetics,
Wi Su Jung, and Sook Shin, and In Kook Park
January 1993, Advances in experimental medicine and biology,
Wi Su Jung, and Sook Shin, and In Kook Park
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
Wi Su Jung, and Sook Shin, and In Kook Park
September 1996, The Journal of biological chemistry,
Copied contents to your clipboard!