Processing of the intron-containing thymidylate synthase (td) gene of phage T4 is at the RNA level. 1985

M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley

The interrupted T4 phage td gene, which encodes thymidylate synthase, is the first known example of an intron-containing prokaryotic structural gene. Analysis of td-encoded transcripts provides evidence in favor of maturation at the RNA level. Northern blotting with T4 RNA and with region-specific probes revealed three classes of RNA: diffuse premessage (ca. 2.5 kb), a low-abundance mature mRNA (ca. 1.3 kb), and an abundant free intron RNA (ca. 1.0 kb). The existence of covalently joined mature mRNA was suggested by hybridization and S1 protection experiments and was confirmed by primer extension analysis of the splice junction. In analogy to expression of interrupted eukaryotic genes, these results are consistent with an RNA processing model that would account for the direct gene transcript serving as precursor for both free intron RNA and a spliced mRNA that is colinear with the thymidylate synthase product.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
September 1985, The Journal of biological chemistry,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
October 1986, The Journal of biological chemistry,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
May 1998, Genes & development,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
April 1986, Cell,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
June 1989, The Journal of biological chemistry,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
July 2008, Molecular and cellular biochemistry,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
December 1993, Biochemical genetics,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
January 1993, Advances in experimental medicine and biology,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
May 1984, Proceedings of the National Academy of Sciences of the United States of America,
M Belfort, and J Pedersen-Lane, and D West, and K Ehrenman, and G Maley, and F Chu, and F Maley
November 1989, Nucleic acids research,
Copied contents to your clipboard!