Initial iron oxidation in horse spleen apoferritin. Characterization of a mixed-valence iron(II)-iron(III) complex. 1991

P M Hanna, and Y Chen, and N D Chasteen
Department of Chemistry, University of New Hampshire, Durham 03824.

In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics of the mixed-valence Fe2(+)-Fe3+ complex and its relationship to the mononuclear Fe3+ complex in horse spleen apoferritin samples to which 0-240 iron atoms were added was examined by EPR spectroscopy. The results indicate that the mononuclear complex is not a precursor to the formation of the mixed-valence complex. Competitive binding studies with Cd2+, Zn2+, Tb3+, and UO2+(2) suggest that the mixed-valence complex is formed on the interior of the protein in the vicinity of the 2-fold axis of the subunit dimer. The mixed-valence complex could be generated by the partial oxidation of Fe2+ in apoferritin containing 120 Fe2+ or by the addition of up to 120 Fe2+ to ferritin already containing 18 Fe3+/protein molecule. The fact that the complex is generated during early Fe2+ oxidation suggests that it may be a key intermediate during the initial oxidative deposition of iron in the protein. The unusual EPR powder lineshape at 9.3 GHz of the mixed-valence complex was simulated with a rhombic g-tensor (gx = 1.95, gy = 1.88, gz = 1.77) and large linewidths and g-strain parameters. The presence of significant g-strain in the complex probably accounts for the failure to observe an EPR signal at 35 GHz and likely reflect considerable flexibility in the structure of the metal site. The temperature dependence of the EPR intensity in the range 8-38 K was modeled successfully by an effective spin Hamiltonian including exchange coupling (-2JS1.S2) and zero-field terms, from which an antiferromagnetic coupling of J = -4.0 +/- 0.5 cm-1 was obtained. This low value for J may reflect the presence of a mu-oxo bridge(s) in the dimer.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001052 Apoferritins The protein components of ferritins. Apoferritins are shell-like structures containing nanocavities and ferroxidase activities. Apoferritin shells are composed of 24 subunits, heteropolymers in vertebrates and homopolymers in bacteria. In vertebrates, there are two types of subunits, light chain and heavy chain. The heavy chain contains the ferroxidase activity. Apoferritin,Ferritin H Subunit,Ferritin Heavy Chain,Ferritin L Subunit,Ferritin Light Chain,H Ferritin,H-Ferritin,L-Ferritin,Ferritin, H,H Subunit, Ferritin,Heavy Chain, Ferritin,L Ferritin,L Subunit, Ferritin,Light Chain, Ferritin
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

P M Hanna, and Y Chen, and N D Chasteen
March 1985, The Journal of biological chemistry,
P M Hanna, and Y Chen, and N D Chasteen
December 1983, The Journal of biological chemistry,
P M Hanna, and Y Chen, and N D Chasteen
August 1971, Igaku to seibutsugaku. Medicine and biology,
P M Hanna, and Y Chen, and N D Chasteen
September 1991, Biochemistry,
P M Hanna, and Y Chen, and N D Chasteen
December 1992, The Journal of biological chemistry,
P M Hanna, and Y Chen, and N D Chasteen
August 2000, Acta crystallographica. Section C, Crystal structure communications,
P M Hanna, and Y Chen, and N D Chasteen
April 1976, Archives internationales de physiologie et de biochimie,
P M Hanna, and Y Chen, and N D Chasteen
July 1982, The Journal of biological chemistry,
P M Hanna, and Y Chen, and N D Chasteen
January 1966, Archives of biochemistry and biophysics,
Copied contents to your clipboard!