Rapid kinetics of the EPR-active species formed during initial iron uptake in horse spleen apoferritin. 1994

S Sun, and N D Chasteen
Department of Chemistry, University of New Hampshire, Durham 03824.

The molecular mechanism of oxidative deposition of iron in ferritin is incompletely understood. In this study, EPR-active species produced during ferritin reconstitution (10-50 Fe/protein) from the apoprotein, Fe2+, and O2 have been investigated using rapid-mixing freeze-quench techniques and EPR spectroscopy. Species studied include a monomeric Fe(3+)-protein complex (g' = 4.3), a mixed-valent Fe(2+)-Fe3+ complex (g' = 1.87), and a newly observed radical with axial symmetry (g parallel = 2.042, g perpendicular = 2.0033), all apparent intermediates formed during the first second of iron oxidation. The monomeric Fe(3+)-protein complex is the principal EPR-observable product of iron(II) oxidation and is produced quantitatively in the first phase of the reaction with the mixed-valent species and the radical formed at slower rates. The initial rate of formation of the monomeric complex (and the radical) is first-order in Fe2+ concentration, consistent with a mechanism in which iron oxidation occurs in a one-electron step(s) with H2O2 being the final product of O2 reduction. A 1:1 relationship between the disappearance of the monomeric Fe(3+)-protein complex and the formation of the mixed-valent Fe(2+)-Fe3+ species was observed in the early phase of the reaction, indicating that the latter is derived from the former and not from the one-electron oxidation of a preformed Fe(2+)-Fe2+ dimer. The g-factors and rapid EPR relaxation properties of the transient radical suggest that it is associated with an Fe2+ (or Fe3+) center but its identity and possible functional role in iron oxidation are unknown.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

S Sun, and N D Chasteen
July 1982, The Journal of biological chemistry,
S Sun, and N D Chasteen
March 2002, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
S Sun, and N D Chasteen
September 1991, Biochemistry,
S Sun, and N D Chasteen
January 1966, Archives of biochemistry and biophysics,
S Sun, and N D Chasteen
July 1981, FEBS letters,
S Sun, and N D Chasteen
August 1971, Biochimica et biophysica acta,
S Sun, and N D Chasteen
January 1970, FEBS letters,
S Sun, and N D Chasteen
January 1996, Archives of biochemistry and biophysics,
S Sun, and N D Chasteen
January 1972, The Biochemical journal,
Copied contents to your clipboard!