Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. 2008

Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, D-82152 Martinsried, Germany.

The dominant cue for localization of low-frequency sounds are microsecond differences in the time-of-arrival of sounds at the two ears [interaural time difference (ITD)]. In mammals, ITD sensitivity is established in the medial superior olive (MSO) by coincidence detection of excitatory inputs from both ears. Hence the relative delay of the binaural inputs is crucial for adjusting ITD sensitivity in MSO cells. How these delays are constructed is, however, still unknown. Specifically, the question of whether inhibitory inputs are involved in timing the net excitation in MSO cells, and if so how, is controversial. These inhibitory inputs derive from the nuclei of the trapezoid body, which have physiological and structural specializations for high-fidelity temporal transmission, raising the possibility that well timed inhibition is involved in tuning ITD sensitivity. Here, we present physiological and pharmacological data from in vivo extracellular MSO recordings in anesthetized gerbils. Reversible blockade of synaptic inhibition by iontophoretic application of the glycine antagonist strychnine increased firing rates and significantly shifted ITD sensitivity of MSO neurons. This indicates that glycinergic inhibition plays a major role in tuning the delays of binaural excitation. We also tonically applied glycine, which lowered firing rates but also shifted ITD sensitivity in a way analogous to strychnine. Hence tonic glycine application experimentally decoupled the effect of inhibition from the timing of its inputs. We conclude that, for proper ITD processing, not only is inhibition necessary, but it must also be precisely timed.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
April 1993, Journal of neurophysiology,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
August 1990, Journal of neurophysiology,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
October 2005, The Journal of physiology,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
July 2004, Journal of neurophysiology,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
October 2011, Journal of neurophysiology,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
March 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
September 1997, Hearing research,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
March 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
March 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael Pecka, and Antje Brand, and Oliver Behrend, and Benedikt Grothe
May 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!