The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system. 1991

I Fujita, and M Konishi
Division of Biology, California Institute of Technology, Pasadena 91125.

The barn owl uses interaural time differences (ITDs) to localize the azimuthal position of sound. ITDs are processed by an anatomically distinct pathway in the brainstem. Neuronal selectivity for ITD is generated in the nucleus laminaris (NL) and conveyed to both the anterior portion of the ventral nucleus of the lateral lemniscus (VLVa) and the central (ICc) and external (ICx) nuclei of the inferior colliculus. With tonal stimuli, neurons in all regions are found to respond maximally not only to the real ITD, but also to ITDs that differ by integer multiples of the tonal period. This phenomenon, phase ambiguity, does not occur when ICx neurons are stimulated with noise. The main aim of this study was to determine the role of GABAergic inhibition in the processing of ITDs. Selectivity for ITD is similar in the NL and VLVa and improves in the ICc and ICx. Iontophoresis of bicuculline methiodide (BMI), a selective GABAA antagonist, decreased the ITD selectivity of ICc and ICx neurons, but did not affect that of VLVa neurons. Responses of VLVa and ICc neurons to unfavorable ITDs were below the monaural response levels. BMI raised both binaural responses to unfavorable ITDs and monaural responses, though the former remained smaller than the latter. During BMI application, ICx neurons showed phase ambiguity to noise stimuli and no longer responded to a unique ITD. BMI increased the response magnitude and changed the temporal discharge patterns in the VLVa, ICc, and ICx. Iontophoretically applied GABA exerted effects opposite to those of BMI, and the effects could be antagonized with simultaneous application of BMI. These results suggest that GABAergic inhibition (1) sharpens ITD selectivity in the ICc and ICx, (2) contributes to the elimination of phase ambiguity in the ICx, and (3) controls response magnitude and temporal characteristics in the VLVa, ICc, and ICx. Through these actions, GABAergic inhibition shapes the horizontal dimension of the auditory receptive fields.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Fujita, and M Konishi
March 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Fujita, and M Konishi
December 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Fujita, and M Konishi
October 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Fujita, and M Konishi
July 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Fujita, and M Konishi
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
I Fujita, and M Konishi
October 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!