Gamma-butyrolactone-induced dopamine accumulation in prefrontal cortex is affected by tyrosine availability. 2008

George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
Psychiatry Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44141, USA. gxj5@case.edu <gxj5@case.edu>

Gamma-butyrolactone (GBL) elevates striatal and prefrontal cortex dopamine levels; only the striatal dopamine levels are elevated by increased dopamine synthesis. If increased dopamine synthesis is necessary in order for dopamine levels to be affected by tyrosine availability, then GBL-induced prefrontal cortex dopamine levels should be tyrosine insensitive. Rats received either vehicle, tyrosine (50 or 200 mg/kg i.p.) or a tyrosine-depleting mixture prior to GBL 750 mg/kg i.p.. GBL-induced dopamine levels in prefrontal cortex were lowered by tyrosine depletion. GBL-induced striatal dopamine levels were not affected. Hence, increased dopamine synthesis may not be necessary in order for tyrosine availability to affect pharmacologically elevated prefrontal cortex dopamine levels.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D015107 4-Butyrolactone One of the FURANS with a carbonyl thereby forming a cyclic lactone. It is an endogenous compound made from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. It is also used as a pharmacological agent and solvent. 1,4-Butanolide,4-Hydroxybutyric Acid Lactone,Furanone, tetrahydro-2-,gamma-Butyrolactone,Dihydro-2(3H)-furanone,1,4 Butanolide,4 Butyrolactone,4 Hydroxybutyric Acid Lactone,Furanone, tetrahydro 2,Lactone, 4-Hydroxybutyric Acid,gamma Butyrolactone
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices

Related Publications

George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
August 1981, Life sciences,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
September 1983, Biological psychiatry,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
June 1976, The Journal of pharmacy and pharmacology,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
August 2022, Diabetic medicine : a journal of the British Diabetic Association,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
January 1979, Journal of neural transmission,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
August 2005, Brain research,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
November 1982, European journal of pharmacology,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
January 1998, European journal of pharmacology,
George E Jaskiw, and Erica Newbould, and Rodolfo Bongiovanni
March 1990, Acta physiologica Scandinavica,
Copied contents to your clipboard!