Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. 2008

B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey.

Mucosal application of a vaccine can effectively induce both systemic and mucosal immune responses. In general, mucosal applications of antigens result in poor immune responses. Therefore, adjuvant/delivery systems are required to enhance the immune response. Chitosan is a cationic biopolymer which exerts advantages as a vaccine carrier due to its immune stimulating activity and bioadhesive properties that enhance cellular uptake and permeation as well as antigen protection. Similar effects are also shown by chitosan derivatives. In this study, the nanoparticulate systems were prepared by using differently charged chitosan derivatives, N-trimethyl chitosan (TMC, polycationic), and mono-N-carboxymethyl chitosan (MCC, polyampholytic) for mucosal immunisation. The derivatives were synthesised and characterised in-house. The aqueous dispersions of the derivatives were also prepared for comparison. The cytotoxicity studies (MTT assay) on Chinese hamster ovary (CHO-K1) cell lines showed that cell viability was in the order of MCC, chitosan and TMC. Nanoparticles were prepared using ionic gelation method and loaded with tetanus toxoid (TT). Nanoparticles with high loading efficacy (>90% m/m), particle size within the range of 40-400nm, with a negative surface charge for MCC and positive surface charge for TMC and chitosan were obtained. The structural integrity of the TT in the formulations was confirmed by SDS-PAGE electrophoresis analysis. The effective uptake of the FITC-BSA loaded nanoparticles into the cells was demonstrated by cellular uptake studies using J774A.1 cells. Immune responses induced by the formulations loaded with tetanus toxoid were studied in vivo in Balb/c mice. Enhanced immune responses were obtained with intranasal (i.n.) application of nanoparticle formulations. Chitosan and TMC nanoparticles which have positively charged surfaces induced higher serum IgG titres when compared to those prepared with MCC which are negatively charged and smaller in size. Nanoparticle formulations developed in this study can be used as promising adjuvant/delivery systems for mucosal immunisation.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002626 Chemistry, Pharmaceutical Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use. Medicinal Chemistry,Chemistry, Pharmaceutic,Pharmaceutic Chemistry,Pharmaceutical Chemistry,Chemistry, Medicinal
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
November 2022, International journal of biological macromolecules,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
August 2010, Journal of nanoscience and nanotechnology,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
February 2014, International journal of biological macromolecules,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
January 2016, Pharmaceutical development and technology,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
May 2015, Carbohydrate polymers,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
August 2012, Carbohydrate polymers,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
December 2009, Journal of controlled release : official journal of the Controlled Release Society,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
January 2012, Journal of biomaterials science. Polymer edition,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
May 2019, Current eye research,
B Sayin, and S Somavarapu, and X W Li, and M Thanou, and D Sesardic, and H O Alpar, and S Senel
July 2020, International journal of biological macromolecules,
Copied contents to your clipboard!