Immune enhancement of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine. 2022

Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China.

The immunogenicity and toxicity of N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/N, O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) as a universal vaccine adjuvant/delivery system remains unclear. The present study indicated that the positively charged N-2-HACC/CMCS NPs showed a regular spherical morphology, with a particle size of 219 ± 13.72 nm, zeta potential of 37.28 ± 4.58 mV, had hemocompatibility and biodegradation. Acute toxicity, repeated dose toxicity, abnormal toxicity, muscle stimulation, whole body allergic reaction evaluation in vitro, and cytotoxicity in vivo confirmed N-2-HACC/CMCS NPs is safe and non-toxic. N-2-HACC/OVA/CMCS NPs were prepared to evaluate the immunogenicity, which showed a particle size of 248.1 ± 15.53 nm, zeta potential of 17.24 ± 1.28 mV, encapsulation efficiency of 92.43 ± 0.96 %, and loading capacity of 42.97 ± 0.07 %. Oral or intramuscular route with the N-2-HACC/OVA/CMCS NPs in mice not only induced higher IgG, IgG1, IgG2a, and sIgA antibody titers, but also significantly produced higher levels of IL-6, IL-4, IFN-γ, and TNF-α, demonstrating that the N-2-HACC/OVA/CMCS NPs enhance humoral, cellular, and mucosal immune responses. Our results not only support the N-2-HACC/CMCS NPs to be a safe and potential universal nano adjuvant/delivery system in vaccine development, especially mucosal vaccines, but also rich the database knowledge of adjuvant/delivery systems, and provide new direction to introduce more licensed adjuvants.

UI MeSH Term Description Entries
D007071 Immunoglobulin A, Secretory The principle immunoglobulin in exocrine secretions such as milk, respiratory and intestinal mucin, saliva and tears. The complete molecule (around 400 kD) is composed of two four-chain units of IMMUNOGLOBULIN A, one SECRETORY COMPONENT and one J chain (IMMUNOGLOBULIN J-CHAINS). Colostral IgA,IgA, Exocrine,IgA, Secretory,SIgA,Secretory IgA,Secretory Immunoglobulin A,Exocrine IgA,IgA, Colostral
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000643 Ammonium Chloride An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating. Sal Ammoniac,Ammoniac, Sal,Chloride, Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D014765 Viral Vaccines Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease. Viral Vaccine,Vaccine, Viral,Vaccines, Viral
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon

Related Publications

Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
November 2022, International journal of biological macromolecules,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
September 2015, International journal of biological macromolecules,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
January 2020, Materials science & engineering. C, Materials for biological applications,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
February 2008, European journal of medicinal chemistry,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
January 2018, Molecular pharmaceutics,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
August 2021, Journal of nanobiotechnology,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
September 2016, Carbohydrate polymers,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
September 2022, International journal of biological macromolecules,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
April 2004, International journal of biological macromolecules,
Yuan Gao, and Xiaochen Gong, and Shuang Yu, and Zheng Jin, and Qicheng Ruan, and Chunjing Zhang, and Kai Zhao
July 2020, International journal of biological macromolecules,
Copied contents to your clipboard!