The electrogenic Na+-HCO3- cotransporter NBCe1-B is regulated by intracellular Mg2+. 2008

Soichiro Yamaguchi, and Toru Ishikawa
Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.

NBCe1-B, a major splice variant of the electrogenic Na+--HCO3- cotransporter (NBCe1) fulfills basic cellular functions including regulation of intracellular pH and epithelial HCO3- secretion. However, its cellular regulatory mechanism still remains elusive. Here, we provide evidence for the first time that NBCe1-B activity can be controlled by intracellular Mg2+ (Mg2+(i)), the physiologically most abundant intracellular divalent cation. Using the whole-cell patch-clamp technique, we found that recombinant NBCe1-B currents expressed in HEK293 and NIH3T3 cells were inhibited voltage-independently by Mg2+(i) in a concentration-dependent manner (K(i) approximately 0.01 mM). The Mg2+(i) inhibition was partially relieved by truncation of the NBCe1-B specific N-terminal region (K(i) approximately 0.3 mM), and was also observed for native electrogenic Na+--HCO3- cotransporter current in bovine parotid acinar cells that endogenously express NBCe1-B (K(i) approximately 1 mM). These results suggest that Mg2+ may be a cytosolic factor that limits intrinsic cotransport activity of NBCe1-B in mammalian cells.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

Soichiro Yamaguchi, and Toru Ishikawa
June 2003, American journal of physiology. Renal physiology,
Soichiro Yamaguchi, and Toru Ishikawa
June 1997, Wiener klinische Wochenschrift,
Soichiro Yamaguchi, and Toru Ishikawa
September 1989, Kidney international,
Soichiro Yamaguchi, and Toru Ishikawa
January 2021, American journal of physiology. Gastrointestinal and liver physiology,
Soichiro Yamaguchi, and Toru Ishikawa
July 2001, JOP : Journal of the pancreas,
Soichiro Yamaguchi, and Toru Ishikawa
January 2009, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Soichiro Yamaguchi, and Toru Ishikawa
August 2023, The Journal of physiology,
Soichiro Yamaguchi, and Toru Ishikawa
September 2023, The Journal of physiology,
Copied contents to your clipboard!