Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. 2008

Hyung Kook Kim, and Michael R Pinsky
Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

BACKGROUND Both pulse pressure variation and stroke volume variation during intermittent positive-pressure ventilation predict preload responsiveness. However, because ventilatory and cardiac frequencies are not the same, increasing the number of breaths sampled may increase calculated pulse pressure variation and stroke volume variation because larger (max) and smaller (min) pulse pressure and stroke volume may occur. Tidal volume and contractility may also alter pulse pressure variation and stroke volume variation. We hypothesized that the magnitude of pulse pressure variation would increase with sampling duration, and that both tidal volume and contractility would independently alter pulse pressure variation and stroke volume variation. METHODS In seven pentobarbital-anesthetized intact dogs arterial and left ventricular pressure (Millar) and left ventricular volume (Leycom) were measured over 8 intermittent positive-pressure ventilation breaths at tidal volume of 5, 10, 15, and 20 mL/kg (f = 20/min, 40% inspiratory time) under baseline, esmolol (2 mg/min), dobutamine infusions (5 microg/kg/min) and following volume loading (500 mL NaCl). Stroke volume variation was calculated using pulse contour method (PiCCO, Pulsion Medical Systems, Munich, Germany) averaged over 12 secs. Pulse pressure variation was calculated as 100 x (PPmax - PPmin)/PPmean and calculated over 1, 2, 3, 4, 5, 6, 7, or 8 breaths. RESULTS Pulse pressure variation increased progressively with increasing sampling duration up to but not exceeding five breaths. The effect on sampling duration was increased by greater tidal volume. Esmolol infusion decreased both pulse pressure variation and stroke volume variation as compared with baseline (p < 0.05) at all tidal volume levels. However, dobutamine did not alter either pulse pressure variation or stroke volume variation. CONCLUSIONS Sampling duration, tidal volume, and beta-adrenergic blockade differentially alters pulse pressure variation and stroke volume variation during intermittent positive-pressure ventilation. Thus, separate validation is required to define threshold pulse pressure variation and stroke volume variation values used to drive resuscitation algorithms.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004280 Dobutamine A catecholamine derivative with specificity for BETA-1 ADRENERGIC RECEPTORS. It is commonly used as a cardiotonic agent after CARDIAC SURGERY and during DOBUTAMINE STRESS ECHOCARDIOGRAPHY. Dobucor,Dobuject,Dobutamin Fresenius,Dobutamin Hexal,Dobutamin Solvay,Dobutamin-ratiopharm,Dobutamina Inibsa,Dobutamina Rovi,Dobutamine (+)-Isomer,Dobutamine Hydrobromide,Dobutamine Hydrochloride,Dobutamine Lactobionate,Dobutamine Phosphate (1:1) Salt, (-)-Isomer,Dobutamine Tartrate,Dobutamine Tartrate (1:1), (R-(R*,R*))-Isomer,Dobutamine Tartrate (1:1), (S-(R*,R*))-Isomer,Dobutamine, (-)-Isomer,Dobutamine, Phosphate (1:1) Salt (+)-Isomer,Dobutrex,Lilly 81929,Oxiken,Posiject,Dobutamin ratiopharm,Hydrobromide, Dobutamine,Hydrochloride, Dobutamine,Lactobionate, Dobutamine,Tartrate, Dobutamine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Hyung Kook Kim, and Michael R Pinsky
May 2017, Chronic respiratory disease,
Hyung Kook Kim, and Michael R Pinsky
March 1985, Archives of disease in childhood,
Hyung Kook Kim, and Michael R Pinsky
December 1970, Acta physiologica Scandinavica,
Hyung Kook Kim, and Michael R Pinsky
November 2008, Pediatric research,
Copied contents to your clipboard!