Using empirical Bayes methods in biopharmaceutical research. 1991

T A Louis
Division of Biostatistics, University of Minnesota, School of Public Health, Minneapolis.

A compound sampling model, where a unit-specific parameter is sampled from a prior distribution and then observed are generated by a sampling distribution depending on the parameter, underlies a wide variety of biopharmaceutical data. For example, in a multi-centre clinical trial the true treatment effect varies from centre to centre. Observed treatment effects deviate from these true effects through sampling variation. Knowledge of the prior distribution allows use of Bayesian analysis to compute the posterior distribution of clinic-specific treatment effects (frequently summarized by the posterior mean and variance). More commonly, with the prior not completely specified, observed data can be used to estimate the prior and use it to produce the posterior distribution: an empirical Bayes (or variance component) analysis. In the empirical Bayes model the estimated prior mean gives the typical treatment effect and the estimated prior standard deviation indicates the heterogeneity of treatment effects. In both the Bayes and empirical Bayes approaches, estimated clinic effects are shrunken towards a common value from estimates based on single clinics. This shrinkage produces more efficient estimates. In addition, the compound model helps structure approaches to ranking and selection, provides adjustments for multiplicity, allows estimation of the histogram of clinic-specific effects, and structures incorporation of external information. This paper outlines the empirical Bayes approach. Coverage will include development and comparison of approaches based on parametric priors (for example, a Gaussian prior with unknown mean and variance) and non-parametric priors, discussion of the importance of accounting for uncertainty in the estimated prior, comparison of the output and interpretation of fixed and random effects approaches to estimating population values, estimating histograms, and identification of key considerations in the use and interpretation of empirical Bayes methods.

UI MeSH Term Description Entries
D012107 Research Design A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly. Experimental Design,Data Adjustment,Data Reporting,Design, Experimental,Designs, Experimental,Error Sources,Experimental Designs,Matched Groups,Methodology, Research,Problem Formulation,Research Methodology,Research Proposal,Research Strategy,Research Technics,Research Techniques,Scoring Methods,Adjustment, Data,Adjustments, Data,Data Adjustments,Design, Research,Designs, Research,Error Source,Formulation, Problem,Formulations, Problem,Group, Matched,Groups, Matched,Matched Group,Method, Scoring,Methods, Scoring,Problem Formulations,Proposal, Research,Proposals, Research,Reporting, Data,Research Designs,Research Proposals,Research Strategies,Research Technic,Research Technique,Scoring Method,Source, Error,Sources, Error,Strategies, Research,Strategy, Research,Technic, Research,Technics, Research,Technique, Research,Techniques, Research
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D001702 Biopharmaceutics The study of the physical and chemical properties of a drug and its dosage form as related to the onset, duration, and intensity of its action. Pharmaceutics,Pharmaceutic
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D015982 Bias Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions. Aggregation Bias,Bias, Aggregation,Bias, Ecological,Bias, Statistical,Bias, Systematic,Ecological Bias,Outcome Measurement Errors,Statistical Bias,Systematic Bias,Bias, Epidemiologic,Biases,Biases, Ecological,Biases, Statistical,Ecological Biases,Ecological Fallacies,Ecological Fallacy,Epidemiologic Biases,Experimental Bias,Fallacies, Ecological,Fallacy, Ecological,Scientific Bias,Statistical Biases,Truncation Bias,Truncation Biases,Bias, Experimental,Bias, Scientific,Bias, Truncation,Biase, Epidemiologic,Biases, Epidemiologic,Biases, Truncation,Epidemiologic Biase,Error, Outcome Measurement,Errors, Outcome Measurement,Outcome Measurement Error
Copied contents to your clipboard!