Polyethylene glycol-conjugated superoxide dismutase fails to blunt postischemic reactive hyperemia. 1991

M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
Department of Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

We tested the hypothesis that superoxide dismutase (SOD) conjugated with polyethylene glycol (PEG-SOD) would alter hyperemia following complete global cerebral ischemia. Thirty minutes before ischemia pentobarbital-anesthetized piglets were assigned to receive 3 ml of either PEG-SOD (10,000 U/ml; n = 10), an equivalent concentration of PEG (n = 10), or saline (n = 10) in a randomized and blinded manner. Cerebral ischemia was sustained for 10 min by cross-clamping the ascending aorta. Measurements of cerebral blood flow (radiolabeled microspheres) and oxygen consumption were made before ischemia and at 2, 4, 8, 12, and 15 min of reperfusion. Plasma SOD activity was higher in PEG-SOD-treated piglets (134 +/- 8 U/ml) than in PEG or saline-treated piglets (less than 5 U/ml). All groups and all brain regions demonstrated postischemic hyperemia. There were no differences in blood flow between groups at any time point in any region. At 2 min of reperfusion, blood flow to cerebrum rose from 31 +/- 4 to 88 +/- 9 ml.min-1.100 g-1 (saline), 44 +/- 6 to 102 +/- 17 ml.min-1.100 g-1 (PEG), and 31 +/- 3 to 83 +/- 16 ml.min-1.100 g-1 (PEG-SOD). During reperfusion cerebral oxygen consumption was not different from preischemic values in any group. In conclusion, we demonstrated that exogenously administered PEG-SOD raises serum SOD activity but does not alter the patterns of early cerebral blood flow or metabolic recovery after 10 min of complete global cerebral ischemia in piglets.

UI MeSH Term Description Entries
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006940 Hyperemia The presence of an increased amount of blood in a body part or an organ leading to congestion or engorgement of blood vessels. Hyperemia can be due to increase of blood flow into the area (active or arterial), or due to obstruction of outflow of blood from the area (passive or venous). Active Hyperemia,Arterial Hyperemia,Passive Hyperemia,Reactive Hyperemia,Venous Congestion,Venous Engorgement,Congestion, Venous,Engorgement, Venous,Hyperemia, Active,Hyperemia, Arterial,Hyperemia, Passive,Hyperemia, Reactive,Hyperemias,Hyperemias, Reactive,Reactive Hyperemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic
D015424 Reperfusion Restoration of blood supply to tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. It is primarily a procedure for treating infarction or other ischemia, by enabling viable ischemic tissue to recover, thus limiting further necrosis. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing REPERFUSION INJURY. Reperfusions
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical

Related Publications

M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
July 1993, The American journal of physiology,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
March 1993, Journal of applied physiology (Bethesda, Md. : 1985),
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
February 1989, The American journal of physiology,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
June 1991, The Annals of thoracic surgery,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
June 1992, Stroke,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
February 1992, The American review of respiratory disease,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
October 1992, Cardiovascular research,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
July 1990, The American journal of the medical sciences,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
May 1988, The Journal of biological chemistry,
M A Helfaer, and J R Kirsch, and S E Haun, and L E Moore, and R J Traystman
February 1982, Pharmacological research communications,
Copied contents to your clipboard!