Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. 1988

J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
Department of Anesthesiology, University of Alabama at Birmingham, University Station 35233.

Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from less than 10 min to 40 h, reduces immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, we hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with 125I-PEG-catalase or 125I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Endothelial cell cultures incubated with PEG-superoxide dismutase and PEG-catalase for 24 h and then extensively washed were protected from the damaging effects of reactive oxygen species derived from exogenous xanthine oxidase as judged by two criteria: decreased release of intracellular 51Cr-labeled proteins and free radical-induced changes in membrane fluidity, measured by electron paramagnetic resonance spectroscopy of endothelial membrane proteins covalently labeled with 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
February 1989, The American journal of physiology,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
May 1991, Stroke,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
January 1986, Journal of free radicals in biology & medicine,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
August 1991, The American journal of physiology,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
July 1993, The American journal of physiology,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
March 1993, Journal of applied physiology (Bethesda, Md. : 1985),
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
October 1987, Journal of applied physiology (Bethesda, Md. : 1985),
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
June 1992, Stroke,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
May 1996, Stroke,
J S Beckman, and R L Minor, and C W White, and J E Repine, and G M Rosen, and B A Freeman
February 1992, The American review of respiratory disease,
Copied contents to your clipboard!