Endothelial modulation and changes in endothelin pressor activity during hypoxia in the rat isolated perfused superior mesenteric arterial bed. 1991

S A Douglas, and S James, and C R Hiley
Department of Pharmacology, University of Cambridge.

1. The isolated superior mesenteric arterial bed of the rat, perfused with Krebs-Henseleit solution containing 10 microM indomethacin, was used to study the effects of reducing dissolved O2 tension on the pressor responses to endothelin-1, endothelin-3 and sarafotoxin S6b. The modulation of these responses by the endothelium was investigated by removing the intima with the detergent CHAPS and, for endothelin-1, by inhibiting nitric oxide production with N omega-nitro-L-arginine methyl ester (L-NAME). Comparison was made with the effects of lowering O2 tension on the pressor responses to noradrenaline and 5-hydroxytryptamine. 2. Lowering the perfusate O2 tension from 551 +/- 2 mmHg to 14.0 +/- 0.5 mmHg did not change the ED50 for endothelin-1 but its maximal responses (Rmax) were increased by 2.1 and 2.7 fold, respectively, in the presence and absence of endothelium. The Rmax values for endothelin-3 were also greater in hypoxia either in the presence (by 2.3 fold) or absence of the endothelium (by 1.6 times) but those for sarafotoxin S6b were only enhanced significantly by hypoxia in the absence of the intima. hypoxia reduced the potencies of endothelin-3 and sarafotoxin S6b whether or not endothelium was present. 3. Endothelial destruction, whether in hypoxic or oxygenated conditions, increased the Rmax values for endothelin-1 and endothelin-3; at both O2 tensions those for endothelin-3 increased more than those for endothelin-1. The ED50 for endothelin-1 was unchanged by destroying the endothelium but endothelin-3 was less potent in the absence of an endothelium than in its presence. Removal of the endothelium did not change the R.ax for sarafotoxin S6b but increased its potency in both hypoxic and oxygenated tissues. 4. In hypoxia, and in the presence of both the endothelium and 100 microM L-NAME, the Rmax for endothelin-1 was 1.6 times greater than that in hypoxia in the absence of L-NAME. Co-infusion of 100 microM L-arginine, but not of 100 mircoM D-arginine, with 100 microM L-NAME reversed this effect. The presence of L-NAME decreased the potency of endothelin-1. 5. Destroying the endothelium did not affect the Rmax for noradrenaline in either oxygenated conditions or hypoxia. Changing 02 tension when the endothelium was intact had no effect on the Rmax but it was 11% greater in oxygenated, than in hypoxic, endothelium denuded preparations. Endothelial destruction decreased the potency of noradrenaline in hypoxia but increased it in oxygenated tissues. In hypoxia, L-NAME had no effect on the ED50 relative to control preparations with endothelium but the Rmax was 30% greater. 6. 5-Hydroxytryptamine gave very small pressor responses in the presence of endothelium in both oxygenated and hypoxic tissues but the Rmax was 1.7 times greater in hypoxia. L-NAME increased the R,,x by 9.8 times in oxygenated preparations and 6.3 fold in hypoxia. The ED5o values were the same in all conditions. 7. It is concluded that, although hypoxia generally increased the R.. for the endothelin/sarafotoxin peptides, the changes could not be explained by a simple increase in receptor number since hypoxia decreased the potency of endothelin-3 and sarafotoxin S6b. Thus alterations in receptor binding or activation properties, or both, also occurred. The changes associated with hypoxia were not common to all vasoconstrictor agonists since, in the absence of endothelial function, hypoxia did not affect the Rmax values for either noradrenaline or 5-hydroxytryptamine. Also, the pressor responses to the peptides and both the amines can be modulated by the endothelium in hypoxia as well as in oxygenated conditions.

UI MeSH Term Description Entries
D008297 Male Males
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Douglas, and S James, and C R Hiley
January 1989, Journal of cardiovascular pharmacology,
S A Douglas, and S James, and C R Hiley
April 1997, British journal of pharmacology,
S A Douglas, and S James, and C R Hiley
September 1990, British journal of pharmacology,
S A Douglas, and S James, and C R Hiley
October 1989, British journal of pharmacology,
S A Douglas, and S James, and C R Hiley
March 1996, Journal of cardiovascular pharmacology,
S A Douglas, and S James, and C R Hiley
October 2004, The Journal of pharmacology and experimental therapeutics,
S A Douglas, and S James, and C R Hiley
September 2002, British journal of pharmacology,
S A Douglas, and S James, and C R Hiley
March 1988, European journal of pharmacology,
Copied contents to your clipboard!