Hormonal regulation of vitellogenin genes: an estrogen-responsive element in the Xenopus A2 gene and a multihormonal regulatory region in the chicken II gene. 1991

E P Slater, and G Redeuilh, and M Beato
Institut für Molekularbiologie und Tumorforschung Philipps Universität, Marburg, Germany.

Expression of the vitellogenin genes in avian and amphibian liver is regulated by estrogens. The DNA elements mediating estrogen induction of the various vitellogenin genes of chicken and Xenopus encompass one or more copies of a 13-mer palindromic sequence called the estrogen-responsive element (ERE). Here we show that upon incubation with the purified estrogen receptor (ER) from calf uterus the Xenopus vitellogenin A2 gene yields a DNase-I footprint over the ERE between -331 and -319. This element does not mediate the response to glucocorticoids or progestins in T47D cells. The three guanine residues in each half of the palindrome are protected against methylation by dimethylsulfate after incubation with ER, but not with glucocorticoid (GR) or progesterone (PR) receptors. In contrast, the chicken vitellogenin II gene exhibits multihormonal regulation by estrogens, progestins, and glucocorticoids in T47D and MCF7 cells. Regulation is mediated by the DNA region between -721 and -591 that contains four binding sites for hormone receptors, as demonstrated by DNase-I footprints and methylation protection experiments. The two distal and most proximal binding sites are recognized by ER, GR, and PR, whereas the central binding site is only bound by ER and GR. At suboptimal concentrations, estrogens and progestins or glucocorticoids act synergistically. In experiments using a DNA fragment containing an ERE adjacent to a glucocorticoid-responsive element/progesterone-responsive element, ER and PR bind synergistically to their corresponding sites, perhaps explaining the functional synergism of both hormones. Thus, two very different regulatory elements are used to mediate estrogen induction of related genes in chickens and amphibians.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011372 Progestins Compounds that interact with PROGESTERONE RECEPTORS in target tissues to bring about the effects similar to those of PROGESTERONE. Primary actions of progestins, including natural and synthetic steroids, are on the UTERUS and the MAMMARY GLAND in preparation for and in maintenance of PREGNANCY. Gestagenic Agent,Progestagen,Progestagenic Agent,Progestational Agent,Progestational Compound,Progestational Hormone,Progestogen,Progestogens,Gestagen,Gestagen Effect,Gestagen Effects,Gestagenic Agents,Gestagenic Effect,Gestagenic Effects,Gestagens,Progestagenic Agents,Progestagens,Progestational Agents,Progestational Compounds,Progestational Hormones,Progestin,Progestin Effect,Progestin Effects,Progestogen Effect,Progestogen Effects,Agent, Gestagenic,Agent, Progestagenic,Agent, Progestational,Compound, Progestational,Effect, Gestagen,Effect, Gestagenic,Effect, Progestin,Effect, Progestogen,Effects, Gestagen,Effects, Gestagenic,Effects, Progestin,Effects, Progestogen,Hormone, Progestational
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

E P Slater, and G Redeuilh, and M Beato
June 1992, Biochemical and biophysical research communications,
E P Slater, and G Redeuilh, and M Beato
February 1990, Molecular endocrinology (Baltimore, Md.),
E P Slater, and G Redeuilh, and M Beato
October 1988, Nucleic acids research,
Copied contents to your clipboard!