Expression of endogenous and transfected apolipoprotein II and vitellogenin II genes in an estrogen responsive chicken liver cell line. 1990

R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
Department of Pharmacological Sciences, Health Sciences Center, State University of New York, Stony Brook 11794.

A recently described chicken liver cell line, LMH, was characterized to evaluate responsiveness to estrogen. Expression of the endogenous apolipoprotein (apo) II gene was induced by 17 beta-estradiol when LMH cells were cultured with chicken serum. The response was low and yielded apoll mRNA at only 0.3% of the level seen in estrogenized rooster liver. Higher levels of apoll mRNA were achieved when LMH cells were transiently transfected with an expression plasmid for estrogen receptor. A transfected apoll gene was strongly expressed only when cotransfected with receptor. Expression of the endogenous vitellogenin (VTG) II gene was not detected. However, when cotransfected with a receptor expression plasmid, VTG II reporter plasmids were expressed in LMH cells in response to 17 beta-estradiol. These results suggest that estrogen responsiveness of LMH cells is limited by the availability of functional receptor. Low levels of estrogen receptor mRNA were detected in LMH cells, and receptor binding sites and mRNA were greatly increased following transient transfection with a receptor expression plasmid. Using this transient transfection protocol, several VTG II reporter plasmids were compared in LMH cells and chick embryo fibroblasts. A plasmid containing VTG II estrogen response elements linked to a heterologous promoter was regulated by estrogen in both cell types. In contrast, reporter plasmids containing the VTG II promoter were regulated by estrogen in LMH cells but were not expressed at all in chick embryo fibroblasts. These results suggest that regulation of the VTG II gene involves cell type-specific elements in addition to estrogen response elements.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011498 Protein Precursors Precursors, Protein
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
August 2014, Theriogenology,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
January 1988, Genes & development,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
March 1991, Molecular endocrinology (Baltimore, Md.),
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
October 1983, The Journal of biological chemistry,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
April 2004, Toxicology and applied pharmacology,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
January 2014, TheScientificWorldJournal,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
September 1989, Biochimica et biophysica acta,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
April 1993, Nucleic acids research,
R Binder, and C C MacDonald, and J B Burch, and C B Lazier, and D L Williams
March 2010, Steroids,
Copied contents to your clipboard!